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1a

Find the critical points and local extremizers of

f(x1, x2, x3) = x2
1 + 3x2

2 + x3

subject to
x2
1 + x2

2 + x2
3 = 4

To solve this, we use Lagrange’s theorem, stating that if x∗ is a local minizer of f subject to h(x) = 0 then (as
long as ∇h1, ...,∇hm are linearly independent, there exists some λ such that

Df(x∗) + λTDh(x∗) = 0

We have

Df(x) =

 2x1

6x2

1


and as there is only one h function, we just have

Dh(x) =

 2x1

2x2

2x3


so we want a λ and x1, x2, x3 solving 2x1

6x2

1

+ λ

 2x1

2x2

2x3

 = 0 x2
1 + x2

2 + x2
3 = 4

From the third equation we have x3 = −1/(2λ). From the first equation we have

x1(1 + λ) = 0

So either x1 = 0 or λ = −1. First consider when x1 = 0. We then have

x2
2 + x2

3 = 4

and
x2(3 + λ) = 0
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So x2 = 0 or λ = −3. First consider when x2 = 0. Then x3 = ±2 and λ = ±(−1/4). So two solutions are

(x1, x2, x3, λ) = (0, 0, 2,−1/4), (0, 0,−2, 1/4)

Next we consider when λ = −3. Then x3 = 1/6. Thus

x2
2 + 1/36 = 4

Meaning x2 = ±
√

143
36 . So two more solutions are

(0,

√
143

36
, 1/6,−3), (0,−

√
143

36
, 1/6,−3)

Now we consider the case where x1 ̸= 0, so λ = −1. For this case we have x3 = 1/2. Also 6x2 − 2x2 = 0 so
x2(6− 2) = 0 so x2 = 0. So we get

x2
1 + 1/4 = 4

meaning x1 = ±
√

15
16 . So our final two solutions are

(

√
15

16
, 0, 1/2,−1), (−

√
15

16
, 0, 1/2,−1)

We can summarize our results as follows To figure out if these points are minimizers for the function, we need

x1 x2 x3 λ
0 0 2 − 1

4
0 0 -2 1

4

0
√

143
36

1
6 -3

0 −
√

143
36

1
6 -3√

15
16 0 1

2 -1

−
√

15
16 0 1

2 -1

Table 1: Stationary points to function

the second order necessary/sufficient conditions, which would require that

L(x, λ) = F (x) + λH(x)

is positive semi-definite or positive definite (but only for points in the tangent space). Similar, for negative semi-
definiteness, we would get a local max rather than a min.
We can compute L as follows

L(x, λ) =

2 0 0
0 6 0
0 0 0

+ λ

2 0 0
0 2 0
0 0 2


If λ = −1/4 we get

L =

3/2 0 0
0 11/2 0
0 0 −1/2


We also have that the tangent space at the first point is

T (x∗) = {y ∈ R3 :

 0
0
2

 y = 0} = {

 a
b
0

 : a, b ∈ R}
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Note that, for any one of these vectors we get that yTLy > 0. Meaning that this point satisfies the second order
sufficient condition and is a minimizer.
Next, note that the second point has 5/2 0 0

0 13/2 0
0 0 1/2


which is pos. definite for any y ∈ R3, so in particular, for any y ∈ T (x∗) we get yTLy > 0. So this point is also a
minimizer.
Next, when λ = −3 we get

L =

−4 0 0
0 0 0
0 0 −6


and for this one we have

T (x∗) = {y ∈ R3 :

 0√
143/3
1/3

 y = 0}

This point will satisfy the necessary condition and the sufficient condition, because the only vector that wouldn’t
be negative from L is (0, a, 0)T . So this point is local maximizer. Similarly, for the third point we get an identical
tangent space except with −

√
143. So that will also be a local maximizer.

Now for the fifth and sixth point, we have λ = −1 so

L =

0 0 0
0 4 0
0 0 −2


For the fifith point we get a tangent space like

y =

 a
b
c


where a

√
15
16 + c/2 = 0. As b can be anything, we have (0, 1, 0) ∈ T (x∗) which would give us a positive number

from the quadratic form, but (a, 0, c) would give us a negative. So the matrix is indefinite, meaning the necessary
conditions are not satisfied.

1b

Find the solutions to

maxxT

(
3 5
0 3

)
x

subject to
||x|| = 1

Similarly, we will use the Lagrange conditions to find the stationary points. We have

Df(x) = ATx+Ax = (AT +A)x =

(
6 5
5 6

)
x =

(
6x1 + 5x2

5x1 + 6x2

)
Similarly,

Dh(x) = D(
√

x2
1 + x2

2) =

(
x1

||x||
x2

||x||

)
So the Lagrange conditions are (

6x1 + 5x2

5x1 + 6x2

)
+ λ

(
x1

||x||
x2

||x||

)
= 0
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and
||x|| = 1

Note that the second equation implies that the first two equations must satisfy

6x1 + 5x2 + λx1 = 0 5x1 + 6x2 + λx2 = 0

and the last equation implies that
x2
1 + x2

2 = 1

We then can solve
x1(6 + λ) = −5x2

and then

x2
2

((
5

6 + λ

)2

+ 1

)
= 1

Also subbing into the second equation we get

5
−5

6 + λ
x2 + (6 + λ)x2 = 0

So either x2 = 0 or

6 + λ− 25

6 + λ
= 0

But if x2 = 0 then x1 = 0 which is clearly not a solution. So we have

(6 + λ)2 − 25 = 0

and thus
36 + 12λ+ λ2 − 25 = λ2 + 12λ+ 11 = 0

which means λ = −11 or λ = −1. If λ = −11, then

x2
2((5/5)

2 + 1) = 1

so x2 =
√
1/2. Consequently x1 = x2 =

√
1/2. So our first solution is

(x1, x2, λ) = (1/
√
2, 1/

√
2,−11)

Now consider when λ = −1. In this case,
x2
2(2) = 1

so x2 = 1/
√
2. Also x1(5) = −5x2. So x1 = −x2 = −1/

√
2. Thus, our other solution is

(−1/
√
2, 1/

√
2,−1)

We can now check the second order conditions by considering first that ||x|| = 1 if and only if ||x||2 = 1. So
h(x) = x2

1 + x2
2 and we get

F (x) =

(
6 5
5 6

)
H(x) =

(
2 0
0 2

)
So

L(x, λ) =

(
6 5
5 6

)
+ λ

(
2 0
0 2

)
If λ = −11 we get

L(x, λ) =

(
−16 5
5 −16

)
This matrix has eigenvalues −21 and −11, so it is negative definite. Thus the first point is a maximizer. We
would expect that, being a quadratic form, the function has a unique max. But just for fun, we can compute L
for λ = −1 to be

L(x, λ) =

(
4 5
5 4

)
Which has eigenvalues 9 and −1. The tangent space for this point will be vectors of the form (1, 1), which just
so happens to be the eigenvector for the 9 eigenvalue. So this second point is a minimizer.
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2

Let

B =

(
I A
A∗ I

)
With A square the ||A||2 ≤ 1. Prove that the condition number of B satisfies

κ(B) =
1 + ||A||2
1− ||A||2

For this problem we first consider the SVD of A given by

A = UΣV ∗

Then note we can write B as

B =

(
I UΣV ∗

V ΣU∗ I

)
Now consider the vector

(
u1

v1

)
, where Av1 = σmaxu1, the largest singular value for A. We then get

B

(
u1

v1

)
=

(
I UΣV ∗

V ΣU∗ I

)(
u1

v1

)
=

(
u1 + σmaxu1

v1σmax + v1

)
= (1 + σmax)

(
u1

v1

)
Note that for any vector of that form, the upper vector cannot grow in magnitude by more than 1 + σmax as it
will be the identity matrix plug a vector scaled by A.

Similarly, note that if we multiply by

(
u1

−v1

)
we get

B

(
u1

−v1

)
= (1− σmax)

(
u1

−v1

)
Observe that this is smallest scaling that can be applied to the vector for the same reason as above. Thus, we
have found the maximum scaling that B can achieve, which is in fact an eigenvalue for B, and the smallest.
Thus we get

σmax = 1 + σmax

where σmax denotes the largest singular value of B. Similarly,

σmin = 1− σmax

and σmax denotes the largest singular value for A. Thus, the condition number for B, being the ratio of the
largest to the smallest singular value is

κ(B) =
1 + σmax

1− σmax

3

The Jacobi iteration to solve Ax = b is given by

x(k+1) = M−1Nx(k) +M−1b

where
M = D N = −(L+ U)

And the Jacobi Over-Relaxation is

M =
1

ω
D N = −

((
1− 1

ω

)
D + L+ U

)
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Prove that if Jacobi converges, then the over-relaxation also converges, when ω ∈ (0, 1].
To prove this, suppose that Jacobi converges. Suppose that x∗ is the solution we seek so

Ax∗ = b

Note that
x(k+1) − x∗ = M−1Nx(k) +M−1b− x∗ = (I −M−1A)x(k) +M−1Ax∗ − x∗

and we can factor out to the form

x(k+1) − x∗ = (I −M−1A)(x(k) − x∗)

Let G = I − M−1A. Then we have that the method will converg if and only if ||G|| < 1 where the norm here
denotes the spectral radius, the largest eigenvalue. We suppose that regular Jacobi converges, meaning that for
G define in Jacobi, namely ||G̃|| < 1. Also denote M̃ = D and Ñ = −(L+ U). Then we get for the over-relation
case

G =

(
1

ω
D

)−1(
−
((

1− 1

ω

)
D + L+ U

))
Note that, as D is diagonal, its inverse is just the matrix with the inverse of its elements. Namely,(

1

ω
D

)−1

= ωD−1

So

G = −ωD−1

((
1− 1

ω

)
D + L+ U

)
= (1− ω)I − ωD−1(L+ U)

Now observe that −D−1(L+ U) = G̃. Now let u be an arbitrary unit vector. By the triangle inequality

||Gu|| ≤ (1− ω)||u||+ ω||G̃u|| < (1 + ω) + ω = 1

As the spectral radius is bounded by the operator norm we get that the spectral radius must then be less than 1.
So the over-relaxation method will converge.

4

a

The Lanczos iteration will tridiagonalize a hermitian matrix A to the form

Tn =


α1 β1 0 0 ... 0
β1 α2 β2 0 ... 0
0 β2 α3 β3 ... 0
. . .
0 0 ... ... ... βn−1

0 ... ... 0 βn−1 αn


Show that if a symmetric, real matrix A has a multiple eigenvalue, then the algorithm will terminate prematurely.
For this problem, we will show that if A has a multiple eigenvalue, then the Krylov subspace Kn will be dimension
strictly less than n. To see this, note that, if A has a multiple eigenvalue, its minimal polynomial, µA will be
degree strictly less than n (where A is n×n). This means deg(µA) ≤ n−1. Consider the Krylov subspace Kn(b).
Note that, because µA has highest power n− 1 at most, we have

µA(A)b ∈ Kn(b)

But µA(A) = 0, so we have found a vector which is a linear combination of Aib for 0 ≤ i ≤ n−1 which is 0. Thus
the vectors b, Ab, ..., An−1b are not linearly independent, so Kn(b) must have dimension less than n.
Because the Krylov subspace is dimension-deficient, we know that at some point, the Gram-Schmit process for
finding an orthonormal basis for Kn will fail for an iteration before n. This would mean that βi = 0 for some
i < n and the Lanczos algorithm will terminate, prematurely.

6



b

Premature termination of the algorithm does not necessarily mean we have a multiple eigenvalue. If our initial
starting vector b is chosen badly enough, i.e. if it does not have a component in every eigenspace for A, then
repeated iterations of A will not hit every eigenspace for A and Kn will be dimension deficient.
However, if we consider the case where the algorithm terminates for almost every choice of b (as being in a lower
dimensional subspace is a measure-0 condition), then we do get the implication that A has a multiple eigenvalue.
This would be because pre-mature termination for almost all b means that there is a polynomial of degree < n
that zeros out A. Thus, the minimal polynomial of A is degree less than n, so there must be repeated factors in
the characteristic polynomial.

5

Let A be a positive definite symmetric n× n matrix and we seek a solution to

Ax = b

Let {z1, ..., zn} be a set of A-orthogonal non-zero vectors. Given a starting point x0, define the conjugate directions

wk =
⟨zk, b−Axk−1⟩

⟨zk, Azk⟩
, xk = xk−1 + wkzk

Prove that Axn = b.
To prove this, first we show what happens when you take the product of xk and Azk.

⟨Azk, xk⟩ = ⟨Azk, xk−1⟩+
⟨zk, b−Axk−1⟩

⟨zk, Azk⟩
⟨Azk, zk⟩

canceling out terms and using linearity we get

⟨Azk, xk−1⟩+ ⟨zk, b⟩ − ⟨Axk−1, zk⟩

As A is symmetric, we have
⟨Axk−1, zk⟩ = ⟨xk−1, Azk⟩

Thus we are left with
⟨Azk, xk⟩ = ⟨zk, b⟩

Now if we similarly consider

⟨Azj , xk⟩ = ⟨Azj , xk−1⟩+
⟨zk, b−Axk−1⟩

⟨zk, Azk⟩
⟨Azj , zk⟩

for j ̸= k we have the second term is 0 so we are left with just ⟨Azj , xk−1⟩. We then get, by repeatedly applying
our two formulas to xn that

⟨Azk, xn⟩ = ⟨zk, b⟩
This happens because multiplication by Azk will reduce the index of x from n until it his k, leaving us with
⟨Azk, b⟩.
Now consider that because all the zk are A orthogonal, they are linearly independent, meaning they form a basis.
Similarly, Azi form a basis, because A is positive-definite. Let

b = β1Az1 + ...+ βnAzn

and
xn = α1z1 + ...+ αnzn

We then have
⟨Azk, xn⟩ = ⟨Azk, α1z1 + ...+ αnzn⟩ = αk⟨Azk, zk⟩

and also
⟨zk, b⟩ = ⟨zk, β1Az1 + ...+ βnAzn⟩ = βk⟨Azk, zk⟩

So by our equality above, we have
αk = βk

for all k. Thus,
Axn = α1Az1 + ...+ αnAzn = β1Az1 + ...+ βnAzn = b
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6

Let A = QR be a reduced QR factorization for a tall matrix A, which is N × n (for N > n). Prove that if R has
m nonzero values on its diagonal, then rank(A) ≥ m.
To prove this, we will show that Ae1, ..., Aem are linearly independent, and thus im(A) has dimension at least m.
Without loss of generality, suppose that the matrix R is ordered so the m nonzero entries are first. Then we have

Ae1 = QRe1 = Qr11e1 = r11q1

where qi is the ith column of Q. Similarly, we have

Ae2 = r21q1 + r22q2 Ae3 = r31q1 + r32q2 + r33q3

In general we have Aek =
∑k

i=1 ri,kqi. Now suppose that for some αis we have

α1Ae1 + ...+ αmAem = 0

We then consider
0 = ⟨qm, α1Ae1 + ...+ αmAem⟩ = rmmαm

because Aem is the only vector in the sum that has a component in the qm direction. As we assumed rii ̸= 0 for
i ≤ m we get αm = 0. We then get, by the same argument

0 = ⟨qm−1, α1Ae1 + ...+ αmAem⟩ = r(m−1),(m−1)αm−1

so αm−1 = 0. Continuing through all m coefficients we get that αi must be 0 for all i. Meaning that the vectors
Aei for i ≤ m are linearly independent, by definition. So A will have rank at least m.

Alterative method We can alternatively get the result via Sylvester’s rank inequality, which states

rank(A) + rank(B)− n ≤ rank(AB)

I this case we can apply it like

rank(Q) + rank(R)− n ≤ rank(QR) = rank(A)

Note that Q is orthogonal, so rank(Q) = n. Also rank(R) = m as the nonzero values in the diagonal correspond
to nonzero eigenvalues. Then we get

n+m− n ≤ rank(A)

so
m ≤ rank(A)

7

Consider the GMRES algorithm, which combines the Arnoldi algorithm with a least squares solver. Define
Kn = span{b, Ab, ..., An−1b}, the nth Krylov subspace for b. Suppose that at iteration n we have ”arnoldi
breakdown” so hn+1,n = 0.

a

Show that AKn ⊆ Kn.
This problem is asking us to consider the case where Arnoldi breakdown occurs, which happens when the Krylov
subspace for n+ 1 is dimension less than n+ 1. This happens because

hn+1,n = ||Aqn −
n∑

j=1

hj,nqj || = 0

where hj,n = ⟨qj , Aqn⟩. This would imply that Aqn ∈ span{q1, ..., qn}. In general, for j < n the Arnoldi iteration
gives us

Aqj =

j+1∑
i=1

hi,jqi
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Now consider Au where u ∈ Kn. We can write

u = α1q1 + ...+ αnqn

so
Au = α1Aq1 + ...+ αnAqn

Note that for j < n, we have Aqj ∈ span{q1, ..., qn} ⊆ Kn. Also for Aqn we showed that Aqn ∈ span{q1, ..., qn} ⊆
Kn as well. So Au ∈ Kn. So AKn ⊆ Kn.

b

Show that this guarentees x ∈ Kn with x solving Ax = b.
In the case described above, we have that the algoritm breaks down at iteration n and no earlier, so hj+1,j ̸= 0
when j < n. This means that for all j < n we get

Aqj =

j+1∑
i=1

hi,jqi

Because A is invertible, the dimension of AK cannot be reduced from dim(Kn). Thus AKn is a dim(Kn) dimen-
sional subspace in Kn. Thus AK = Kn. We then get that

b ∈ Kn ∈ AKn

So, by definition of AKn, b = Ax for some x ∈ Kn.

c

Assuming A is diagonalizable and we are given n < m. Describe a method for determining b such that this
breakdown will occur no later than step n.
We want a vector b such that AKn(b) = Kn(b). Consider the orthonormal eigenbasis for A with eigenvectors
v1, ..., vm. If we choose b ∈ span{v1, ..., vn} we get that

Anb = λn
1 v1 + λn

2 v2 + ...+ λn
nvn ∈ span{v1, ..., vn}

So Ajb ∈ span{v1, ..., vn} for all j. So the Krylov subspace must be dimension at most n. If AKn was not
contained in Kn, then we would have n + 1 linearly independent vectors in span{v1, ..., vn}, which is clearly a
contradiction.

8

a

Consider the algorithm x(k+1) = x(k) − αkMk∇f(x(k)) where f : R2 → R and f ∈ C1 and

Mk =

(
1 1
0 a

)
and

αk = argminα≥0f(x
(k) − αMk∇f(x(k)))

At some iteration we have ∇f(x(k)) = (1,−1)T . Find the largest range of values for a that guarantees αk > 0.
This is a modified version of the steepest descent algorithm, and we want to find the values for a such that
αk ̸= 0, meaning there will be a descent direction in Mk∇f(x(k)). A descent direction will be a direction v in
which ∇f(x)T v > 0. This is essentially asking to find the conditions in which

∇f(x(k))TMk∇f(x(k)) > 0

We can compute this value as (
1 −1

)(1 1
0 a

)(
1
−1

)
=
(
1 −1

)( 0
−a

)
= a

so for the above quantity to be positive, we must have a > 0.

9



b

Consider a function f : Rd → R with f(w) ≥ c for all w ∈ Rd. Assume there is some L > 0 such that

f(w′) ≤ f(w) +∇f(w)T (w′ − w) +
L

2
||w′ − w||2

for all w,w′ ∈ Rd. Show that there exists some α ∈ R such that if we run gradient descent with fixed step size α,
we get

min
0≤t≤T−1

||∇f(w(t))||2 ≤ 2L

T
|f(w(0))− c|

If we consider w′ = w(t+1) = w − α∇f(w(t)), we have, from the descent lemma

f(w′) ≤ f(w)−∇f(w)T (α∇f(w)) +
L

2
||α∇f(w)||2

= f(w)− ||∇f(w)||2(α− Lα2

2
)

Rearranging we get

f(w′)− f(w) ≤ −||∇f(w)||2α(1− Lα

2
)

and

f(w)− f(w′) ≥ ||∇f(w)||2α(1− Lα

2
)

If we pick α = 2/L we have α(1− Lα
2 ) = 1/(2L), so we get that

f(w)− f(w′) ≥ ||∇f(w)||2 1

2L

Subbing in what w and w′ are we have

f(x(k+1))− f(x(k)) ≥ ||∇f(x(k))||2 1

2L

We sum up the iterates of this inequality for the iterations 1 through T . Giving us

f(x(T ))− f(x(0)) ≥
T−1∑
j=0

||∇f(x(j))||2 1

2L
≥ min

0≤j≤T−1
||∇f(x(j))||2 T

2L

Then we use the fact that f(w) ≥ c for all w to get

c− f(x(0)) ≥ min
0≤j≤T−1

||∇f(x(j))||2 T

2L

and thus

|c− f(x(0))|2L
T

≥ min
0≤j≤T−1

||∇f(x(j))||2

Spring 2023

1

Consider Ax = b with

A =

1 0 a
0 1 0
a 0 1


with a ∈ C. Derive the condition on a for Gauss-Seidel to converge.
First note that Gauss-Seidel iterations take the form

x(k+1) = Gx(k) +M−1b
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where M = L+D and N = −U , and G = M−1N , where L,U,D denote the strictly upper, lower, and diagonal
parts of the matrix. Then if we subtract x∗ (the solution to Ax∗ = b from both sides, we get

x(k+1) − x∗ = M−1Nx(k) +M−1b− x∗

= M−1(M −A)x(k) +M−1Ax∗ − x∗

= (I −M−1A)x(k) − (I −M−1A)x∗

= (I −M−1A)(x(k) − x∗)

= G(x(k) − x∗)

So we get that the error x(k) − x∗ will go to zero if ρ(G) < 1, i.e. the largest eigenvalue of G (in absolute value)
is less than 1. For this specified A we can compute

M =

1 0 0
0 1 0
a 0 1


which has inverse

M−1 =

 1 0 0
0 1 0
−a 0 1


so

G = M−1N =

0 0 a
0 0 0
0 0 −a2


which has eigenvalues λ = 0,−a2. So if |a2| ≤ 1 we get that the Gauss-Seidel iterations will converge.

2

Let B ∈ Rn×m with rank(B) = p. Let A = I − BBT and we want to solve Ax = b with the conjugate-gradient
method. Assuming a solution exists in at most how many iterations would convergence happen?

3

The Lanczos iteration trigiagonalizes a Hermitian A. Assuming exact arithmetic, prove that qj is orthogonal to
q1, ..., qj−1.
Note that

βj−1qj = Aqj−1 − βj−2qj−2 − ⟨qj−1, Aqj−1⟩qj−1

The first and third term ensure that βjqj ⊥ qj−1. Now, to proceed by induction, we assume that qj−1, ..., q1 are
orthogonal. Then compute

⟨βj−1qj , qj−2⟩ = qTj−2Aqj−1 − βj−2 − 0

Note that qTj−2Aqj−1 = (Aqj−2)
T qj−1 becauseA is self-adjoint. AndAqj−2 = βj−2qj−1+βj−3qj−3+⟨qj−2, Aqj−2⟩qj−2.

So
(Aqj−2)

T qj−1 = ⟨βj−2qj−1, qj−1⟩ = βj−2

So
⟨βj−1qj , qj−2⟩ = βj−2 − βj−2 = 0

Also note that for any other ql we can write

⟨βj−1qj , ql⟩ = (Aql)
T qj−1 + 0

Note that unless l = j− 2, j− 1 Aql will be a linear combination of qp with p < j− 1. So the inner product above
will be 0. Thus we get that qj is orthogonal to all qi for i < j.
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4

Let A∗ = −A (skew Hermitian). Prove (I −A)−1(I +A) is unitary.
To prove this, first note that

(I −A)−1(I +A)−1 = ((I +A)(I −A))
−1

= ((I −A)(I +A))
−1

= (I +A)−1(I −A)−1

Also note that for any matrix (B∗)−1 = (B−1)∗. Then we multiply the matrix by its Hermitian conjugate to get(
(I −A)−1(I +A)

)∗ (
(I −A)−1(I +A)

)
= (I −A) ((I −A)∗)

−1
(I −A)−1(I +A)

= (I −A)(I +A)−1(I −A)−1(I +A)

= (I −A)(I −A)−1(I +A)−1(I +A)

= I2 = I

So the Hermitian conjugate of the matrix is its inverse, meaning the matrix is unitary.

5

Suppose M = AB has a QR factorization. Prove or disprove the following

• The matrix A has a QR factorization

• The matrix B has a QR factorization

In general, a matrix A will have a QR factorization if it is tall, i.e. it is m× n with m ≥ n.
This question is rather weird in its form as written. It slightly depends on your definition of the QR factorization.
If we take the typical definition that A = QR where Q has orthogonal columns and R is upper triangular then
there are situations in which A has a QR factorization and B does not and visa versa. For example, let

A =

(
1 0 0
1 1 1

)
B =

1 1
0 1
0 1


Then

AB =

(
1 1
1 3

)
which has a QR factorization. But note that A has no QR factorization (B does however). Alternatively consider

A =

1
2
3

 B =
(
2 1

)
Then

AB =

2 1
4 2
6 3


which is tall, so it has a QR factorization. If B has a QR factorization then Q would need to be 1 × k and R
would be k×2. If k > 1, then Q could not be orthogonal (because any two scalars are always linearly dependent).
So k = 1 and R =

(
2 1

)
6

Let A be a square diagonalizable matrix with eigenvalues |λ1| ≤ |λ2| ≤ |λ3| ≤ .... Consider the power method to
compute an eigenvector q1 of λ1 which iterates as zn+1 = Azn/||Azn||.
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a

Show (by example or in words) that if |λ1| = |λ2|, the power method does not necessarily converge to an eigenvector
of λ1.
If |λ1| = |λ2|, then we can have a part of the matrix that will not change the norm of a vector, but will simple
rotate the vector of repeatedly swap between 2 different eigenvectors in a cyclic pattern. The prototypical example
of this is the roation matrix

A =

(
0 −1
1 0

)
Note that this matrix is diagonalizable, and decomposes as

A =

(
i/
√
2 −i/

√
2

1/
√
2 1/

√
2

)(
i 0
0 −i

)(
i/
√
2 1/

√
2

−i/
√
2 1/

√
2

)
So |λ1| = |λ2|. Also note that if ||u|| = 1, then ||Au|| = 1. So the iteration will simple by zn+1 = Azn. But this
matrix simple rotates the vector zn by π/2 about the origin, so clearly the iteration will never converge.

b

Prove that if λ1 = λ2, and |λ3| < |λ1, then the method still converges to an eigenvector of λ1.
To prove this, we start by writing z0 as a linear combination of eigenvectors for A, which is possible because

A is diagonalizable. So
z0 = α1v1 + α2v2 + ...+ αnvn

where vn are the eigenvectors for A for eigenvalues λ1, λ2, .... Then note that

Az0 = α1λ1v1 + ...+ αnλnvn

and then

z1 =
Az0

||Az0||
=

α1λ1v1 + ...+ αnλnvn√
⟨α1λ1v1 + ...+ αnλnvn, α1λ1v1 + ...+ αnλnvn⟩

In the square root on the denominator, we can write the expression as√
λ2
1⟨α1v1 + α2v2, α1v1 + α2v2⟩+O(λ2−1

1 )

because all other eigenvalues are bounded by λ1 = λ2. Then note that

zk =
Akz0

||Az0|| ∗ ||Az1|| ∗ ... ∗ ||Azk||
=

α1λ
k
1v1 + ...+ αnλ

k
nvn√

γk

Note that z1 = Az0/||Az0|| so

||Az0|| ∗ ||Az1|| =
||Az0|| ∗ ||A2z0||

||Az0||
= ||A2z0||

Similarly ||Az0|| ∗ ||Az1|| ∗ ... ∗ ||Azk|| = ||Akz0|| So γk = ||Akz0||2 will be a large polynomial in λ1 with the first
factor being

⟨α1λ
k
1v1 + ...+ αnλ

k
nvn, α1λ

k
1v1 + ...+ αnλ

k
nvn⟩ = λ2k

1 ||α1v1 + α2v2||2 +O(λk
1)

Then multiply the top and bottom by 1/λk
1 and note that λ1 = λ2 to get

zk =
α1v1 + α2v2 + α3

(
λ3

λ1

)k
v3 + ...+ αn

(
λn

λ1

)k
vn√

||α1v1 + α2v2||2 +O( 1
λk
1
)

Then we take the limit as k → ∞ to get

zk → α1v1 + α2v2
||α1v1 + α2v2||

which is an eigenvector of A with eigenvalue λ1.
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7

I wrote this problem down wrong and then solved it completely for the wrong f(x1, x2) so this is not actually the
answer to the qual problem. I did not finish it for this reason. I also messed up and said that µ1 < 0 at some
point which should not be possible. Consider the problem to find the extremizer of

x2
1 + x1x2

subject to x3
2 ≤ x1 ≤ 2.

a

Write down the KKT conditions for this problem and give all the points that satisfy them. The KKT conditions
are that there exist λ ∈ Rm and µ ∈ Rp such that

∇f(x∗) + λTDh(x∗) + µTDg(x∗) = 0

with µT g = 0 and µ ≥ 0. Here h is the vector of equality constraints and g is the vector of inequality constraints
(g(x1, x2) ≤ 0). Here we just have g with

g =

(
g1(x1, x2)
g2(x1, x2)

)
=

(
x3
2 − x1

x1 − 2

)
≤ 0

Then we have

Dg(x1, x2) =

(
−1 3x2

2

1 0

)
Then

∇f + µTDg =

(
2x1 + x2

x1

)
+ µ1

(
−1
3x2

2

)
+ µ2

(
1
0

)
=

(
2x1 + x2 − µ1 + µ2

x1 + 3µ1x
2
2

)
= 0

So we get 4 equations
2x1 + x2 − µ1 + µ2 = 0

x1 + 3µ1x
2
2 = 0

µ1(x
3
2 − x1) + µ2(x1 − 2) = 0

(Note that the last equation actually gives two different equation as each term must be positive. First consider
the case when µ1 = µ2 = 0. Then 2x1 = −x2 and x1 = 0. So x2 = 0. This point satisfies g(x1, x2) ≤ 0 because
g(x1, x2) = (0,−2)T . So the first point that satisfies the KKT conditions is

(0, 0, 0, 0)

Next let µ1 = 0, µ2 ̸= 0. We then get
2x1 + x2 + µ2 = 0

and x1 = 0. Also µ2(x1 − 2) = 0 so x1 = 2. This cannot be solved so there are no solutions where µ1 = 0 and
µ2 ̸= 0. Next, consider when µ1 ̸= 0 and µ2 = 0. We get 2x1 + x2 − µ1 = 0, and x1 = x3

2. If x2 = 0, we get the
solution we already obtained. If x2 ̸= 0 we get the second equation as

x3
2 + 3µ1x

2
2 = 0 =⇒ x2 + 3µ1 = 0

So
2x1 + x2 − µ1 = 2x3

2 + x2 − x2/3 = 0

We factor out x2 again to get

2x2
2 +

2

3
= 0

So x2 = 1/
√
3. Then x1 = 1

3
√
3
, which is certainly less than 2, so this point is valid. We then get that µ1 = −1

3
√
3
.

So the point satisfying the KKT conditions is

(
1

3
√
3
,
1√
3
,− 1

3
√
3
, 0)

Finally, consider when µ1 ̸= 0 and µ2 ̸= 0. We then have x1 = 2 and x1 = x3
2. So x2 = 3

√
2. Then

2 + 3µ12
2/3 = 0

So µ1 = −2−1/3/3. And then µ2 = −2x1 − x2 + µ1 = −4− 21/3 − 1
21/33

. Giving us our last point.
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b

The second order necessary conditions state that

F + µ1G1 + µ2G2 = 0

is positive semi-definite on the tangent space T (x) = {y ∈ R2 : Dgiy = 0} for i ∈ J(x), the active constraints of
g, where F is the Hessian of f , G1 is the Hessian of g1 and G2 is the Hessian of g2. We can compute this as(

2 1
1 0

)
+ µ1

(
0 0
0 6x2

)
+ µ2

(
0 0
0 0

)
=

(
2 1
1 6µ1x2

)
I will do the analysis just for the second point. So µ1x1 = −1/27. In this case

L(x1, x2) =

(
2 1
1 −2/9

)
In this case the only active constraint is g1, so the tangent space will be all the vectors orthogonal to

Dg1 =

(
−1
1

)

This will be vectors of the form

(
a
a

)
. For this vector note that

vTLv =
(
a a

)( 3a
7/9a

)
= 3a2 +

7

9
a2 ≥ 0

So this point satisfies the second order necessary conditions.

c

Determine whether the point satisfies the second order sufficient conditions. We will similarly just analyze the
point above. For that point note that vTLv = a2(34/9) so if a ̸= 0 this will be strictly greater than 0. So this
point satisfies the second order sufficient conditions. Technically, we need to check vectors orthogonal to active
constraints where µi > 0. But for g1 we have µ1 ̸= 0.

8

a

Consider a linear program in the standard form. Let x be a basic feasible solution. Show that if the reduced cost
of every nonbasic variable is positive, then x is a unique solution.
A linear program is an optimization problem of the form min cTx subject to Ax = b and x ≥ 0. Consider a basic
feasible solution, x. So Ax = b and x ≥ 0. Then let the reduced cost of every nonbasic variable be positive. That
is if

A =
(
B D

)
where B is invertible, then x =

(
xb

xd

)
and for every index j such that xj is part of xd we get the the reduced

cost,
cj − cTB−1aj > 0

We can then define δj = ej − B−1aj so the statement that the reduced cost is positive is simply cT δj > 0. We
will show that every feasible direction (direction in which the equality constraint and inequality constraints are
preserved, is a positive linear combination of δj).
Suppose v is a feasible direction. So for α > 0 small enough, x+ αv satisfies the constraints. That is

A(x+ αv) = Ax+ αAv = b
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But Ax = b so we get that Av = 0. Now consider splitting v =

(
vb
vd

)
as we do with x. This means that

Bvb = −Dvd

So vb is completely determined by vd. If vd = ej we get vb = −B−1Dej = −B−1aj . So that means

vd =

k∑
j=1

γjej =⇒ v =

k∑
j=1

γjδ
j

as δj = ej − B−1aj . Also note that we need x + v ≥ 0 so vd must only be a positive linear combination of ej
and thus v a positive linear combination of δj . So that means that, for any feasible direction,

cT (x+ v) = cTx+

k∑
j=1

γjc
T δj > cTx

so long as all the γjs are not 0. Meaning that x is a local minimizer of the objective. However, a linear program
is convex so a local minimum is a global minimum. We get uniqueness because of the strict inequalities above.

b

Use duality to prove that the problem of minimizing cTx subject to x ≥ 0 will have a solution if and only if c ≥ 0.
Also show that if a solution exists, then 0 is a solution.
For a problem of the for min cTx subject to Ax ≥ b and x ≥ 0 the dual problem is max bTλ subject to λTA ≤ cT

and λ ≥ 0. If the dual problem is bounded and has a nonempty feasible set, then the primal problem is nonempty
and bounded. To see this note that a value in the feasible set for the dual, λA ≥ cT so λAx ≤ cTx and also
λT b ≤ λTAx. So λT b ≤ cTx. So if there is any feasible λ, we get that cTx is bounded (from below). Also if cTx
is unbounded (from below), there is no λ that can be feasible for the dual problem. Additionally, note that if bTλ
is unbounded, it means there can be no feasible x.
So if the dual problem has a solution (no-empty feasible set and bounded objective), then the primal will have
a solution. I do not actually know how to get the implication in the other direction using duality. But you can
prove the other direction using non-duality methods, as I do below.
Note that the problem above seeks to minimize cTx subject to x ≥ 0. This can be thought of as the standard
linear problem of minimizing cTx subject to Ax ≥ b with A = 0 and b = 0. The dual problem will then be to
maximize 0λ subject to 0 ≤ cT . If cT ̸≥ 0, then the dual problem will have no feasible solutions. If cT ≥ 0, then
the dual will have a feasible solution (namely, any vector), and thus the primal problem will be bounded. The
primal problem necessarily has a nonempty feasible set, so it will have a solution.
If cT ̸≥ 0, then let ci < 0. The vector x = αei for any α > 0 will have that cTαei = αci = −α|ci|, which will grow
to ∞ as α → ∞ (which will always remain in the feasible set).

9

Let f : Rn → R be a convex function with f∗ = infx f(x) > −∞. Consider the subgradient method

x(k+1) = x(k) − αkg
k

where gk ∈ ∂f(x(k)). Show that if 0 < αk < 2 f(x(k))−f∗

||g(k)||2 then

||x(k+1) − x∗|| < ||x(k) − x∗||

for any optimal point x∗.
To prove this subtract x∗ from both sides of our update rule to get

x(k+1) − x∗ = x(k) − x∗ − αkg
k
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Then taking the norm of both sides via the inner product we get

||x(k+1) − x∗||2 = ⟨x(k+1) − x∗, x(k+1) − x∗⟩
= ⟨x(k) − x∗ − αkg

k, x(k) − x∗ − αkg
k⟩

= ||x(k) − x∗||2 − 2αk⟨gk, x(k) − x∗⟩+ α2
k||gk||2

Now use the fact that gk ∈ ∂f(x(k)) to say f(x∗)− f(x(k)) ≥ ⟨gk, x∗ − x(k)⟩ so the above quantity becomes

= ||x(k) − x∗||2 + 2αk⟨gk, x∗ − x(k)⟩+ α2
k||gk||2

≤ ||x(k) − x∗||2 + 2αk(f(x
∗)− f(x(k))) + α2

k||gk||2

Now use the bound on αk to get that

< ||x(k) − x∗||2 + 4
(f(x(k))− f(x∗))(f(x∗)− f(x(k)))

||gk||2
+ 4

(f(x(k))− f(x∗))2

||gk||2

= ||x(k) − x∗||2 + 4
(f(x(k))− f(x∗))2

||gk||2
− 4

(f(x(k))− f(x∗))2

||gk||2

= ||x(k) − x∗||2

So we get ||x(k+1) − x∗||2 < ||x(k) − x∗||2. Meaning ||x(k+1) − x∗|| < ||x(k) − x∗||.

Fall 2024

1

Let A be a unitary matrix.

a

Prove that the condition number of A is 1.
For this proof we can proceed in two different ways. Firstly, consider the SVD of A given by UΣV ∗. To get

the values on the diagonal of Σ we consider the eigendecomposition of A∗A. But A is unitary, so A∗A = I. So
all the eigenvalues of A∗A are 1. The singular values σi will then be the square roots of the eigenvalues of A∗A,
so they will be 1. Then note that

κ(A) =
σmax

σmin
= 1

The second way to approach this proof is note that the singular values of A will be the absolute value of the
eigenvalues of A, when A is diagonalizable. As a unitary matrix, the eigenvalues of A will all lie on the unit circle,
and in particular have aboslute value 1. So all the singular values must be 1.

b

Prove that A is orthogonally diagonalizable.
This problem is trivial by invoking the spectral theorem (we have A∗A = AA∗ = I, so A is normal and thus

orthogonally diagonalizable), so we will prove the special case of the spectral theorem for unitary A.
To do this, we will first show that for any eigenspace E of A. We have

V = E ⊕ E⊥

and E⊥ is A-invarient. Note that the direct product is obvious from the definition of E⊥. The more interesting
part is showing that AE⊥ = E⊥. Consider some v ∈ E⊥. So ⟨v, u⟩ = 0 for all u ∈ E. Then consider

⟨Av, u⟩ = ⟨v,A∗u⟩

Because A and A∗ commute, they perserve each other eigenspaces (this can be seem because if Au = λu, then
AA∗u = A∗Au = λA∗u). So A∗u ∈ E and thus ⟨v,A∗u⟩ = 0. So Av ∈ E⊥.
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Now we proceed by induction on the dimension of the domain of A. The base case is easy, there is only one
eigenvector. For the inductive step, note that, by the fundamental theorem of algebra, A must have an eigenvector
in the space. Then A will have some eigenspace E and we can decompose

V = E + E⊥

Then the operator A|E⊥ is still linear and by the inductive hypothesis, we get that it will be orthognally diago-
nalizable. So we have decomposed V into E along with the orthogonal eigenspaces we get from A|E⊥ . So A will
be othogonally diagonalizable.

2

Let A be a real square matrix with eigendecomposition A = V ΛV −1. Suppose that the perturbation A+ δA has
eigenvalue µ. Prove that there exists some eigenvalue λ of A such that |λ − µ| ≤ κ(V )||δA|| (where κ(A) is the
condition number of V and || · || is the spectral norm).

For this problem we will first prove the hint: if µ is not an eigenvalue of A then −1 is an eigenvalue of
(Λ− µI)−1V −1δAV . To see this suppose w is an eigenvalue of A+ δA with eigenvalue µ. Then

(A+ δA)w = µw

Rearranging this expression gives us
(A− Iµ)w = −δAw

Now define w1 = V −1w. We can then write

V (Λ− µI)w1 = V (Λ− µI)V −1w = (A− Iµ)w = −δAw = −δAV w1

We can multiply both expressions by V −1 then to get

(Λ− µI)w1 = −V −1δAV w1

And finally, note that (Λ− µI)−1 will be nonsingular because µ is not an eigenvalue of A, we get

w1 = (Λ− µI)−1V −1δAV

Next we show that the spectral norm is submultiplicative. That is ||AB|| ≤ ||A||||B||. To see this, consider the
SVD of A,B so

AB = UΣV ∗Û Σ̂V̂ ∗

Because U, V, Û , V̂ can never change the magnitude of a vector, the spectral norm will depend only on the product
ΣΣ̂. As both matices are diagonal, the product will just be the element-wise product of the diagonals, will will
certainly be less than σmax ˆσmax. So the spectral norm is sub-multiplicative.
Now, for the problem, if µ is an eigenvalue of A, then the inequality is true trivially. So suppose not. Then we
have that −1 is an eigenvalue of (Λ− µI)−1V −1δAV . Thus, the spetral norm will satisify

1 ≤ ||(Λ− µI)−1V −1δAV || ≤ ||(Λ− µI)−1||||δA||(V )

Note that ||Λ− µI|| = 1
λj−µ for some λj because the matrix is diagonal so we know all its eigenvalues. Thus, for

some λj we get
(λj − µ) ≤ κ(V )||δA||

As desired.
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