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This document contains a brief overview of all the topics that I have found may appear on the optimization
and numerical linear algebra qualifying exam. I have tried to organize the topics by similarity. The list of
topics was started based off the UCLA qual website https://ww3.math.ucla.edu/qualifying-exam-dates/

and appended as past qual problems were done.
Past ONLA qualifying exams can be found at https://ww3.math.ucla.edu/past-qualifying-exams/
Basic optimization theory material was taken from [1] and [2]

1 Optimization

1.1 Unconstrained Optimization

1.1.1 Differentiable f

Let f : Rn → R be C1. Then the first order necessary condition is
If x∗ is a local minimizer for f over Ω ⊂ Rn, then, for any feasible direction d, we have

dT∇f(x∗) ≥ 0

If Ω = Rn then every direction is feasible and the condition becomes

∇f(x∗) = 0

For f ∈ C2, the Second order necessary conditions state
If x∗ is a local minimizer for f over Ω ⊆ Rn, then for any feasible direction d, whenever

dT∇f(x∗) = 0

We have
dTF (x∗)d ≥ 0

where F is the Hessian of f . When Ω = Rn this becomes that F (x∗) is positive semi-definite.
For the case where Ω = Rn we have the Second order sufficient condition which states
For f ∈ C2 if

• ∇f(x∗) = 0

• F (x∗) > 0, that is F is positive definite

then x∗ is a strict local minimizer for f .

1.2 Constrained Optimization

For x ∈ Rn, f : Rn → R, h : Rn → Rm, and g : Rn → Rp

min f(x)

subject to hi(x) = 0, i = 1, ...,m

gj(x) ≤ 0, j = 1, ..., p
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1.2.1 Lagrange Conditions

If we have no inequality conditions, so we just have f and h, then Lagrange’s Theorem states
Let x∗ be a local minimizer of f subject to h(x) = 0 with h : Rn → Rm. Assume that x∗ is a regular point for h,
that is ∇h1(x

∗), ...,∇hm(x∗) are linearly independent. Then there exists λ∗ ∈ Rm such that

Df(x∗) + (λ∗)TDh(x∗) = 0

1.2.2 Karush-Kuhn-Tucker (KKT) Conditions

Let f, g, h ∈ C1. Let x∗ be a regular point minimizing f subject to h(x) = 0, g(x) ≤ 0. Then there exists λ∗ ∈ Rm

and µ∗ ∈ Rp such that

• µ∗ ≥ 0

• Df(x∗) + (λ∗)TDh(x∗) + (µ∗)TDg(x∗) = 0

• (µ∗)T g(x∗) = 0

The second order KKT conditions can be formulated by defining

T (x∗) = {y ∈ Rn : Dh(x∗)y = 0, Dgj(x
∗)y = 0, j ∈ J(x∗)}

where J is the set of indices representing active contraints at x∗. Also define

L(x, λ, µ) = F (x) + λ1H1(x) + ...+ λmHm(x) + µ1G1(x) + ...+ µpGp(x)

where Hi is the Hessian of hi, etc. Then we have
If f, g, h ∈ C2 and x∗ is a local minimizer that is also regular then there exists λ∗ and µ∗ satisfying the first order
KKT conditions and also, for all y ∈ T (x∗) we have

yTL(x, λ∗, µ∗)y ≥ 0

The sufficient conditions can be obtained by defining

T (x∗, µ∗) = {y : Dh(x∗) = 0, Dgi(x
∗) = 0, i ∈ J(x∗, µ∗)

where J(x∗, µ∗) = {i : gi(x∗) = 0, µ∗
i > 0}. Then we have

If f, g, h ∈ C2, and there is a feasible point x∗ along with vectors λ∗, µ∗ such that

• µ∗ ≥ 0

• Df(x∗) + (λ∗)TDh(x∗) + (µ∗)TDg(x∗) = 0

• (µ∗)T g(x∗) = 0

• For all y ∈ T (x∗, µ∗) with y ̸= 0 we have yTL(x, λ∗, µ∗)y ≥ 0

Then x∗ is a strict local minimizer for the above problem.

1.2.3 Lagrange Duel Problem

Similarly, define the Lagrangian
L(x, λ, µ) = f(x) + λTh(x) + µT g(x)

Then the Lagrange duel function is given by

G(λ, µ) = inf
x

L(x, λ, µ)

Then if λ ≥ 0 we have
G(λ, µ) ≤ p∗ = f(x∗)

The lagrange duel problem is
max
λ,µ

G(λ, µ)

to find the greatest lower bound on the optimal value p∗. This will be a convex problem, even if the original
optimization of f is not.
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2 Iterative Methods

2.1 Iterative Methods for Nonlinear Optimization

2.1.1 The Gradient Descent Algorithm

In order to find a minima of the function f ∈ C1 we compute the iterations in the following way

x(k+1) = x(k) − αk∇f(x(k))

The steepest descent algorithm uses the step size chosen so

αk = argminα>0f(x
(k) − α∇f(x(k)))

The Baillon-Haddad Theorem: If f is a convex function, it is L-Lipschitz differentiable, if and only if

||∇f(x)−∇f(y)||2 ≤ L⟨∇f(x)−∇f(y), x− y⟩

for all x, y
Theorem: Let f : Rn → R be twice differentiable, convex, and L-Lipschitz differentiable. Then gradient descent
with fixed step size t < 1/L satisfies

f(xk)− f(x∗) ≤ ||x0 − x∗||2

2tk

Proof. First note that ∇f(x) is Lipshitz with constant L. So for any x, y, z we have

||∇2f(z)(x− y)|| ≤ L||x− y||

and similarly
(x− y)T∇2f(z)(x− y) ≤ L||x− y||2

Taylor expanding f gives us

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(ξ)(y − x)

≤ f(x) +∇f(x)T (y − x) +
L

2
||y − x||2

If we let y = x− t∇f(x) then we get

f(y) ≤ f(x) +∇f(x)T (−t∇f(x)) +
L

2
|| − t∇f(x)||2

= f(x) + (
Lt2

2
− t)||∇f(x)||2

As t < 1/L we have
Lt2

2
− t =

(
Lt

2
− 1

)
t

and Lt/2 < 1/2 so Lt/2− 1 < 1/2. So we get

f(y) ≤ f(x) +
t

2
||∇f(x)||2

We can similarly argue that Lt/2− 1 ≤ − 1
2 . As f is convex we have

f(x) ≤ f(x∗) +∇f(x)T (x− x∗)

Plugging this into the other equation yields

f(y) ≤ f(x∗) +∇f(x)T (x− x∗)− t

2
||∇f(x)||2
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So

f(y)− f(x∗) ≤ 1

2t

(
2t∇f(x)T (x− x∗)− t2||∇f(x)||2

)
=

1

2t

(
2t∇f(x)T (x− x∗)− t2||∇f(x)||2 − ||x− x∗||2 + ||x− x∗||2

)
Observing that

2t∇f(x)T (x− x∗)− t2||∇f(x)||2 − ||x− x∗||2 = −||x− 2t∇f(x)− x∗||2 = −||y − x∗||2

We get

f(y)− f(x∗) ≤ 1

2t

(
||x− x∗||2 − ||y − x∗||2

)
As this will true for any iteration of the gradient descent method, we get

k∑
i=1

f(x(k))− f(x∗) ≤ 1

2t

k∑
i=1

(
||x(i−1) − x∗||2 − ||x(i) − x∗||2

)
Note that each iteration, the value of f is decreasing. Thus

f(x(k))− f(x∗) ≤ 1

k

k∑
i=1

f(x(k))− f(x∗) ≤ 1

2tk

k∑
i=1

(
||x(i−1) − x∗||2 − ||x(i) − x∗||2

)
Note that the series on the right is telecoping, resulting in

||x0 − x∗||2 − ||x(k) − x∗||2 ≤ ||x0 − x∗||2

So we have

f(x(k))− f(x∗) ≤ 1

2tk
||x0 − x∗||2

2.1.2 Newton’s Method

Newton’s method for a function f ∈ C2 is given by

x(n+1) = x(n) − F (x(n))−1∇f(x(n))

Note that F must be positive semi-definite, otherwise Newton’s method will be driven towards a maximizer rather
than a minimizer.
If the function is well-behaved in the interval around the optimum and the initial guess is chosen sufficiently close,
then Newton’s method will converge quadratically.

The Levenberg-Marquardt modification to Newton’s method is

x(k+1) = x(k) − (F (x(k)) + µkI)
−1∇f(x(k)

3 Convex Functions

A function is convex if its domain is a convex set and for any x, y ∈ dom(f) and λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

The epigraph of a function
epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

We have that a function is convex if and only if its epigraph is a convex set.
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3.1 Subgradients

A vector g is a subgradient of a convex function f at x0 if, for any y ∈ dom(f) we have

f(y) ≥ f(x0) + ⟨g, y − x0⟩

The set of subgradients of f is called the subdifferential of f at x0, denoted ∂f(x0).
The first-order optimality condition in terms of subgradients is x∗ is a minimizer for a convex function f if and
only if 0 ∈ ∂f(x0).
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