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This document contains a brief overview of all the topics that I have found may appear on the optimization
and numerical linear algebra qualifying exam. I have tried to organize the topics by similarity. The list of
topics was started based off the UCLA qual website https://ww3.math.ucla.edu/qualifying-exam-dates/
and appended as past qual problems were done.

Past ONLA qualifying exams can be found at https://ww3.math.ucla.edu/past-qualifying-exams/

Basic optimization theory material was taken from [1] and [2]

1 Optimization

1.1 Unconstrained Optimization
1.1.1 Differentiable f

Let f:R™ — R be C!. Then the first order necessary condition is
If * is a local minimizer for f over 2 C R™, then, for any feasible direction d, we have

dIVf(z*) >0
If @ = R" then every direction is feasible and the condition becomes
Vi) =0

For f € C?, the Second order necessary conditions state
If * is a local minimizer for f over {2 C R™, then for any feasible direction d, whenever

dTVf(z*) =0

We have
dTF(z*)d >0

where F' is the Hessian of f. When © = R” this becomes that F'(z*) is positive semi-definite.
For the case where ) = R™ we have the Second order sufficient condition which states
For f € C? if

. V/() =0
e F(z*) > 0, that is F is positive definite

then z* is a strict local minimizer for f.

1.2 Constrained Optimization
Forz e R", f:R*" >R, h:R*" - R™, and g : R* — R?
min f(z)
subject to h;i(z) =0, i=1,...m
gi(z) <0, j=1,..,p



1.2.1 Lagrange Conditions

If we have no inequality conditions, so we just have f and h, then Lagrange’s Theorem states
Let «* be a local minimizer of f subject to h(x) = 0 with h : R™ — R™. Assume that z* is a regular point for h,
that is Vhy(x*), ..., Vhp, (2*) are linearly independent. Then there exists A* € R™ such that

Df(x*) + (A\)'Dh(z*) =0

1.2.2 Karush-Kuhn-Tucker (KKT) Conditions

Let f,g,h € C'. Let o* be a regular point minimizing f subject to h(z) = 0, g(z) < 0. Then there exists \* € R™
and p* € RP such that

o 1F >0
e Df(x*) + (\)TDh(a*) + (u*)T Dg(a*) = 0
o (1) Tg(a*) =0
The second order KKT conditions can be formulated by defining
T(z*) ={y € R": Dh(z")y = 0, Dg;(z")y = 0,j € J(z")}
where J is the set of indices representing active contraints at x*. Also define
Lz, A\ p) = F(z) + MHi(z) + ... + A\ Hp(2) + 11 Ga(2) + ... 4+ 1, Gp(2)

where H; is the Hessian of h;, etc. Then we have
If f,g,h € C? and z* is a local minimizer that is also regular then there exists \* and p* satisfying the first order
KKT conditions and also, for all y € T'(x*) we have

y Lz, A", 1% )y > 0
The sufficient conditions can be obtained by defining
T(e*,u*) = {y : Dh(z") = 0, Dgi(a") = 0,1 € J (", ")

where J(z*, u*) = {i : g;(x*) =0, uf > 0}. Then we have
If f,g,h € C?, and there is a feasible point =* along with vectors A*, u* such that

o >0

o Df(z*) + (\)"Dh(z*) + (u*)" Dg(a*) = 0

o (u*)Tg(z*)=0

e For all y € T(x*, u*) with y # 0 we have yT L(z, \*, u*)y > 0

Then x* is a strict local minimizer for the above problem.

1.2.3 Lagrange Duel Problem

Similarly, define the Lagrangian
L(z, A\ p) = (@) + ATh(z) + pTg(z)

Then the Lagrange duel function is given by

G\, p) =1inf L(x, A\, 1)
Then if A > 0 we have

G\ p) <p* = flz")
The lagrange duel problem is
max G(A, p)
o

to find the greatest lower bound on the optimal value p*. This will be a convex problem, even if the original
optimization of f is not.



2 Iterative Methods

2.1 Iterative Methods for Nonlinear Optimization
2.1.1 The Gradient Descent Algorithm

In order to find a minima of the function f € C! we compute the iterations in the following way
2D = 2 ®) _ o, v (™)
The steepest descent algorithm uses the step size chosen so
o = argming o f(2*) — aV f(2™")
The Baillon-Haddad Theorem: If f is a convex function, it is L-Lipschitz differentiable, if and only if
IVf(@) = Vi? < LV f(z) = Vf(y),a—y)

for all z,y
Theorem: Let f: R™ — R be twice differentiable, convex, and L-Lipschitz differentiable. Then gradient descent
with fixed step size ¢ < 1/L satisfies
f@®) = f(=*) < M
- 2tk
Proof. First note that V f(z) is Lipshitz with constant L. So for any z,y, z we have
IV2f(2)(z = y)l| < Lllx - yl|

and similarly
(@ —y)"V?f(2)(z —y) < Lllz —y|]?

Taylor expanding f gives us
Fl) = @)+ V)l — ) + 3 (o~ )V FE)y )

< @)+ V@)~ a)+ 2y —
If we let y = & — tV f(x) then we get
F) < 7(@) + V@ (9 5@) + 51| - 9@

Lt?

= f(@) + (= = OlIVF@)I]

As t < 1/L we have

and Lt/2 < 1/2so Lt/2 —1 < 1/2. So we get

t
fl) < @)+ IV @I
We can similarly argue that Lt/2 — 1 < —%. As f is convex we have

fl@) < f(a) + V(@) (@ —a)

Plugging this into the other equation yields

F) < FG7) + V@)@ =) = ]IV @)



So
Fl) = F*) < o (V7@ (0 = 2%) ~ 21V @) )
= 2% 2tV f(@)" (x —2) = |V (@)I]* = |lz — 2*|]* + ||z — 27| ]?)
Observing that
2V f(2)"(z — 2*) = ||V (@)|]* - |lz — «*|] = ~[Jx = 2tV f(2) — 27||* = ~|ly — z*|]?
We get
Fy) = 1) < 5 (le = 2| = |ly — «*|%)

As this will true for any iteration of the gradient descent method, we get

k k
S 46®) = 1) < 5 3 (1867 = 27| @ — 27|

i=1 i=1

Note that each iteration, the value of f is decreasing. Thus

1 1 & . .
f@®) = f@) < > @) - fa —EZ;OMWﬂgnﬂFfHﬁ”foﬁ

i=1
Note that the series on the right is telecoping, resulting in

ll? = 2*[|? = [|]2®) — 2| < ||2° — 2| P?

So we have
|2 —2*[|?

(k)y _ *
fa™) fla®) < o

2.1.2 Newton’s Method

Newton’s method for a function f € C? is given by
) 2 g ()1 ()

Note that F' must be positive semi-definite, otherwise Newton’s method will be driven towards a maximizer rather
than a minimizer.
If the function is well-behaved in the interval around the optimum and the initial guess is chosen sufficiently close,
then Newton’s method will converge quadratically.

The Levenberg-Marquardt modification to Newton’s method is

L) — (k) (F(a:(’f)) + ,uk[)—lvf(gp(k)

3 Convex Functions
A function is convex if its domain is a convex set and for any z,y € dom(f) and X € [0, 1] we have
fOz+ (1 =Ny) < Af(z) + (1 =N f(y)

The epigraph of a function
epi(f) = {(z,1) € dom(f) x R: f(z) < 1}

We have that a function is convex if and only if its epigraph is a convex set.



3.1 Subgradients

A vector g is a subgradient of a convex function f at xg if, for any y € dom(f) we have

f(y) > f(wo) + (9, y — w0)

The set of subgradients of f is called the subdifferential of f at xo, denoted 9f(xg).
The first-order optimality condition in terms of subgradients is z* is a minimizer for a convex function f if and
only if 0 € 9f ().
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