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This document contains a brief overview of all the topics that I have found may appear on the numerical
analysis qualifying exam. I have tried to organize the topics by similarlity. The list of topics was started based
off the UCLA qual website https://ww3.math.ucla.edu/qualifying-exam-dates/ and appended as past qual
problems were done.

Past numerical analysis qualifying exams can be found at https://ww3.math.ucla.edu/past-qualifying-exams/
Much of the material on undergraduate numerical analysis was taken from [4]. Material on numerical methods

for ODEs was mainly taken from [1],[2], and [3]. Material for numerical methods on the one-way wave equation
is taken from [6]. Material on conservation laws is taken from Yuxuan Liu’s notes and [5]

1 Interpolation

1.1 Lagrange Interpolation

If x0, ..., xn are n + 1 distinct real numbers and f is defined on those numbers, then there is a unique, degree-n
polynomial P such that

P (xi) = f(xi)

for all i = 0, ..., n. The n’th Lagrange Interpolating Polynomial is given by

Ln,k(x) =
(x− x0)(x− x1)...(x− xk−1)(x− xk+1)...(x− xn)

(xk − x0)...(xk − xk−1)(xk − xk+1)...(xk − xn)

=
∏

i=0,i̸=k

(x− xi)

(xk − xi)

The unique polynomial P is then given by

P (x) = f(x0)Ln,0(x) + f(x1)Ln,1(x) + ...+ f(xn)Ln,n(x)

1.2 Divided Differences

The divided differences for a function f and real numbers x0, ..., xn is defined by

f [xi] = f(xi)

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi

and the kth divided difference is given by

f [xi, xi+1, ..., xi+k] =
f [xi+1, ..., xi+k]− f [xi, ..., xi+k−1]

xi+k − xi

If P is the polynomial made from the Lagrange interpolating polynomials above, then (Newton’s Divided Differ-
ence Formula)

P (x) = f [x0] +

n∑
k=1

f [x0, ..., xk](x− x0)...(x− xk−1)

If f ∈ Cn[a, b] then there exists a number ξ ∈ (a, b) such that

f [x0, ..., xn] =
f (n)(ξ)

n!
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1.3 Cubic Spline Interpolation

For a function f defined on [a, b] and a set of notes a = x0 < ... < xn = b the cubic spline interpolation is the
piecewise-cubic function S such that

1. On each sub-interval [xj , xj+1], S is a cubic function, denoted Sj

2. Sj(xj) = f(xj), Sj(xj+1) = f(xj+1)

3. Sj(xj+1) = Sj+1(xj+1)

4. S′
j(xj+1) = S′

j+1(xj+1)

5. S′′
j (xj+1) = S′′

j+1(xj+1)

If S′′(x0) = S′′(xn) = 0, it is a natural or free boundary. If S′(x0) = f ′(x0) and S′(xn) = f ′(xn), it is a clamped
boundary.

There is always a unique natural spline interpolating between n data points and a unique clamped spline
interpolating between n data points (assuming that f ′(x0) and f ′(xn) are given).

If f ∈ C4[a, b] with max |f (4)(x)| ≤ M then there will be some constant C such that

|f(x)− S(x)| ≤ Cmax
j

(xj − xj+1)
4

for a clamped spline C = 5M
384

2 Numerical Differentiation

Forward difference formula

f ′(x) ≈ f(x+ h)− f(x)

h

Backward difference formula

f ′(x) ≈ f(x)− f(x− h)

h

(n+ 1)-point formula

f ′(xj) =

n∑
k=0

f(xk)L
′
k(xj) +

f (n+1)(ξ(xj))

(n+ 1)!

∏
k=0,k ̸=j

(xj − xk)

which comes from the error bound for the Lagrange interpolating polynomials.
Second derivative midpoint formula

f ′′(x0) =
1

h2
(f(x0 − h)− 2f(x0) + f(x0 + h))− h2

12
f (4)(ξ)

3 Richardson Extrapolation

If your error is of the form
M = N(h) +K1h+K2h

2 + ...

then you can define N2(h) = N(h2 ) +
(
N(h2 )−N(h)

)
to get

M = N2(h)−
K2

2
h2 − 3K3

4
h3 + ...

increasing the order of the approximation by 1.
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4 Numerical Integration

4.1 Trapezoidal Rule

The trapezoidal rule comes from approximating the function by two points and using the trapezoid as an estimate
for the integral ∫ b

a

f(x)dx =
h

2
(f(a) + f(b))− h3

12
f ′′(ξ)

where h = b− a

4.2 Simpson’s Rule

For Simpson’s rule we use 3 points∫ x2

x0

f(x)dx =
h

3
(f(x0) + 4f(x1) + f(x2))−

h5

90
f (4)(ξ)

where h = (b− a)/2 and the points are evenly spaced.

4.3 Newton-Cotes

The (n+1)-point closed Newton-Cotes formula uses the points x0 = a, x1 = a+h, ..., xn−1 = a+(n−1)h, xn = b
with h = (b− a)/n ∫ b

a

f(x)dx ≈
n+1∑
i=0

aif(xi)

ai =

∫ xn

x0

Li(x)dx =

∫ xn

x0

∏
j=0,j ̸=i

x− xj

xj − xi
dx

The open version is the same thing but without the endpoints so x0 = a+h and xn = b−h with h = (b−a)/(n+2)

4.4 Composite Numerical Integration

Composite numerical integration is when we break up the integral into a bunch of smaller ones and then apply
one of our rules for each one.
The composite Simpson’s rule is

∫ b

a

f(x)dx =
h

3

f(x0) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(xn)

− (b− a)h4

180
f (4)(µ)

4.5 Romburg Integration

We apply Richardson Extrapolation to the composite trapezoid rule for numerical integration. Denote the integral
approximation for n = 1, 2, 4, 8, ... by R1,1, R2,1, .... Then we can increase the order of our approximation via

Rk,j = Rk,j−1 +
1

4j−1 − 1
(Rk,j−1 +Rk−1,j−1)

4.6 Gaussian Quadrature

We seek to approximate ∫ b

a

f(x)dx =

n∑
i=1

cif(xi)
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where the xi are not necessarily easily spaced. The Gaussian quadrature is the choice of ci’s and xi’s such that
the formula is exact for polynomials up to (and including degree 2n− 1. For n = 2 the optimal choice is∫ b

−1

f(x)dx ≈ f(−
√
3

3
) + f(

√
3

3
)

which gives correct answers for polynomials of degree less than or equal to 2n− 1 = 3.
For higher order accurate formulas, define Pn as the n’th Legendre polynomaial. The Legendre polynomials are
monic and satisfy ∫ 1

−1

P (x)Pn(x)dx = 0

if P (x) is a polynomial of degree less than n. The first few are

P0 = 1 P1(x) = x P2(x) = x2 − 1/3 P3(x) = x3 − 3/5x

Then let x1, ..., xn be the roots of the n’th Legendre polynomial. And let

ci =

∫ 1

−1

∏
j=1,j ̸=i

x− xj

xj − xi
dx

The above xi’s and ci’s define the n’th order Gaussian quadrature, which is accurate for polynomials of degree
2n− 1.

5 Iterative Methods

5.1 Fixed Point Iteration

If g ∈ C[a, b] such that |g′| < k for some constant 0 < k < 1, then for any p0 ∈ [a, b], the sequence

pn+1 = g(pn)

converges to a unique fixed point for g.
In fact this convergence is linear, meaning

lim
n→∞

pn+1 − p∗

pn − p∗
= λ < 1

Note this it may converge faster, but it will be at least linear, always.
If, in addition, g ∈ C2[a, b] with |g′′| ≤ M and g′(p∗) = 0, then for p0 sufficiently close to p∗ we get quadratic
convergence. In fact for high enough n we have

|pn+1 − p∗| ≤ M

2
|pn − p∗|

Quadratic convergence for fixed-point iteration can only occur if g′(p∗) = 0

5.2 Newton’s Method

Newton’s method for finding a root of f ∈ C2[a, b] is given by

pn+1 = pn − f(pn)

f ′(pn)

If started sufficiently close to p∗ where p∗ is a simple root, then Newton’s method will converge quadratically.
If p∗ is a root of multiplicity m, then the modification to Newton’s method given by

pn+1 = pn −m
f(pn)

f ′(pn)
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will converge quadratically. For a non-simple root of any order, we can apply Newton’s method to the function

µ(x) = f(x)
f ′(x) giving

pn+1 = pn − f(x)f ′(x)

(f ′(x))2 − f(x)f ′′(x)

However, this is generally a dumb idea in practice because floating point error in the denominator causes the
iterations to be thrown wildly off (boy, sure it great they make us study this modification then...).

6 Numerical Methods for ODEs

Generally, we consider ODEs of the form
dy

dt
= f(y, t)

6.1 Stability and Consistency

A numerical scheme is 0-stable if, for two different solutions, xn, zn with potentially different initial conditions,
but otherwise all things the same we can bound

|xi − zi| ≤ K|x0 − z0|

for some constant K and all i ≤ N where N = (b − a)/h. This basically means that the solutions depend
continuously on the initial conditions.
The local truncation error for a method is the difference between a the scheme and the actual ODE when
applied to a solution. If the difference scheme is given by some update rule

yn+1 = Φh(yn)

then the local truncation error is defined as

y(tn+1) = Φh(y(tn)) + τn

where y(t) is a solution to the ODE.
A numerical scheme is consistant if

τn = o(h) lim
h→0

τn/h = 0

We say that a numerical scheme is convergent of order p if

en = yn − y(tn) = O(hp)

where y(t) solves the ODE and e0 = 0 (initial conditions match).
Theorem: A numerical method that is both consistent and 0-stable is convergent.
For a 0-stable method, if τn = O(hp), then the method will be convergent of oder p− 1.

The Region of Absolute Stability for a method is

S = {λh ∈ C : yn → 0 when the scheme is applied to the model problem with h}

where the model problem is
y′ = λy

This means that, for λh ∈ S, the scheme will have yn → 0 as n → ∞ when the step size is h, when applied to
the model problem.
To get the region of absolute stability, you simply apply the method to y′ = λy and find the conditions for yn → 0.
For example, the region of absolute stability for forward euler is

{z ∈ C : |1 + z| ≤ 1}
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6.2 Common Methods

6.2.1 Forward Euler

yn+1 = yn + hf(tn, yn)

We find the local truncation error by plugging in y(t) (an exact solution to the ODE) to get

y(tn+1) = y(tn) + hf(tn, y(tn)) + τn

Then noting that

y(tn+1) = y(tn) + hf(tn, y(tn)) +
h2

2
y′′(ξ)

So we get

τn =
h2

2
y′′(ξ)

Suppose f has Lipschitz constant L and y′′ is bounded by M . Then we can get the global error as

|en+1| = |y(tn+1)− yn+1 = y(tn) + hf(tn, y(tn))− yn − hf(tn, yn) + τn|
≤ |y(tn)− yn|+ h|f(tn, y(tn))− f(tn, yn)|+ |τn|
≤ en + hL(y(tn)− yn) + |τn|
= (1 + hL)en + |τn|

So, by repeatedly applying this inequality we get

|en| ≤ (1 + hL)en−1 + |τn| ≤ (1 + hL)2en−2 + (1 + hL)|τn−1|+ |τn|

etc. Finally arriving at

|en| ≤ (1 + hL)ne0 +

n−1∑
j=0

(1 + hL)j |τj |

≤ (1 + hL)ne0 + max
i=1,...,n

|τi|
(1 + hL)n − 1

1− (1 + hL)

≤ (1 + hL)ne0 +
h2M

2

(1 + hL)n − 1

−hL

≤ h2M

2

(1 + hL)n − 1

hL

=
hM

2L
((1 + hL)n − 1)

Where we have assumed that e0 = 0. Now we use the fact that (1 + hL)n ≤ enLh and nh = T (the length of the
time interval we are considering to get

|en| ≤
hM

2L
(eTL − 1) ≤ hM

2L
eTL

So forward Euler is an order-1 method.

6.2.2 Backward Euler

The backward Euler method is an implicit scheme given by

yn+1 = yn + hf(tn, yn+1)

The local truncation error is found by noting that

y(tn+1) = y(tn) + hf(tn, y(tn)) +
h2

2
y′′(ξ)
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and

f(tn, y(tn+1)) = f(tn, y(tn)) + (y(tn+1)− y(tn))fy(tn, y(tn)) +O(h2) = f(tn, y(tn)) + hffy +O(h2)

So

y(tn) + hf(tn, y(tn)) +
h2

2
y′′(ξ) = y(tn) + h(f(tn, y(tn)) + hffy +O(h2)) + τn

Note that ffy = y′′ so

τn = h2y′′(ξ)(
1

2
− 1) = −h2

2
y′′(ξ)

If we let M be a bound on y′′ and f have Lipschitz constant L. Then we have

en+1 = |y(tn+1)− yn+1| = |y(tn) + hf(tny(tn+1)) + τn − yn − hf(tn+1, yn+1)|
≤ |y(tn)− yn|+ hL|y(tn+1)− yn+1|+ |τn|
= en + hLen+1 + |τn|

So en+1 ≤ en
1−hL + |τn|

1−hL Repeatedly applying this formula gives

en ≤ e0
(1− hL)n

+

n−1∑
j=0

|τj |
(1− hL)n−j

Our bound gives us that |τn| ≤ Mh2

2 for all n so, assuming e0 = 0 we get

en ≤
n∑

j=1

Mh2

2

1

(1− hL)j

We then apply the geometric sum formula to get

en ≤ h2M

2

1−
(

1
1−hL

)n
1− 1

1−hL

=
Mh2

2

(1−
(

1
1−hL

)n
)(1− hL)

hL

which we simply as

en ≤ Mh

2L
(1−

(
1

1− hL

)n

)

Note that 1
1−hL = 1 + hL

1−hL and that

(1 +
hL

1− hL
)n ≤ e

NhL
1−hL

So

en ≤ Mh

2L
(1 + e

NhL
1−hL ) =

Mh

2L
(1 + e

TL
1−hL )

So implicit Euler is an order-1 method.

6.2.3 Heun’s Method (Explicit Trapezoid, Modified Euler’s Method)

Heun’s method is given by the update rule

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn + hf(tn, yn))

Heun’s method will be an order 2 method.

6.2.4 Implicit Trapezoid

The implicit trapezoid method is given by the update rule

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1))
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7 Numerical Methods for PDEs

7.1 The One-Way Wave Equation

The simplest one-way wave equation (and simpliest PDE for that matter) is the

ut + aux = f(t, x)

for x ∈ [x0, x1], t ≥ 0, with initial data given by u(0, x) = u0(x).

7.1.1 The Method of Characteristics

Often the qual is concerned with the well-posedness of an IBVP. For a one-way wave equation, the standard way
to do this is with the method of characteristics. Note that while the method is often used for solving equations,
you do not necessarily need to solve the equation to determine if the problem is well-posed.
We can consider the one-way wave with variable coefficient

ut + a(t, x)ux = f(t, x)

Then we seek a transform of the form t → τ and x → ξ such that the differential operator on the left hand side
will simplify. This will be a specific curve in the xt-plane. Let us consider x = x(τ) and t = t(τ). Then

d

dτ
u(t(τ), x(τ)) = t′ut + x′ux

If we pick t(τ) such that t′ = 1 and x(τ) such that x′ = a(t, x) then this will be accomplished. Immediately, we
see that t = τ will work. The second condition will be satisfied if we can solve the ODE

dx

dt
= a(x, t)

Once we do this we have
d

dt
u(t, x(t)) = f(t, x)

We could equivalently write w(t) = u(t, x(t)) and solving the PDE becomes a problem of solving the ODE

w′ = f(t, x)

The well-posedness of the problem will then come down to the solvability of this ODE and its dependence on
initial conditions. Typically we will be concerned with solving the PDE on a bounded interval [x0, x1]. The
characteristic curves we get from solving the ODE for x(t) will inform the dependence on initial conditions. If
x(0) is outside the interval, but x(t) ∈ [x0, x1] for some t later, then a value inside the specified interval will
depend on an initial value outside the interval. Because the initial conditions u0(x) are only specified in the
interval [x0, x1] we will need more information, in the form of boundary values.
We can then say that for the problem on x ∈ [a, b], if x′(t) > 0 when x = x0 for any t then we will need boundary
conditions on the boundary x = x0. If x′(t) < 0 when x = x1 for any t, then we will need boundary conditions
on the boundary for x = x1. Here x(t) is the characteristic curve described above. Otherwise, we cannot specify
boundary conditions and have a solution necessarily exist.
Often a will just be a function of x, a(x), which case, we get x′(t) = a(x), so the boundary conditions required
will depend on the sign of a(x0) and a(x1).

7.1.2 Stability and the CLF Conditions

A numerical finite difference scheme approximating the one-way wave (or any PDE) is stable in stability region
Γ (a region in the kh-plane) if there exists some integer J such that for any positive time T we have

h

∞∑
m=−∞

|vnm|2 ≤ CTh

J∑
j=1

∞∑
m=−∞

|vjm|2
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for all n ≤ T/k. where CT can depend on T but not h or k. Note that this is saying

h||vn||l2 ≤ CTh

J∑
j=1

||vj ||l2

where || · ||l2 denotes the spacial l2 discrete norm. So stability states that every l2 norm for each timestep is
bounded by a constant times the sum of the first few l2 norms.

The Courant-Friedrichs-Lewy condition states that, for a finite difference scheme, trying to approximate
the one-way wave equation, if the scheme is of the form

vn+1
m = αvnm−1 + βvnm + γvnm+1

A necessary condition for stability of the scheme is

|aλ| ≤ 1

where λ = k/h. This can be thought of as the condition that the speed propagation of information of the wave
(given by a) is less than the speed at which the finite difference scheme calculates (which is given by the ratio
between the temporal step size and spacial step size).
The CFL conditions will generally not be sufficient.

7.1.3 Consistancy and The Lax-Richtmyer Equivalence Theorem

Consistency of a method say whether the difference operator approximates the differential operator. A finite
difference scheme Pk,hv = f is consistant with the differential equation Pu = f if, for any smooth ϕ

Pk,hϕ− Pϕ → 0 as h, k → 0

The Lax Richtmyer Equivalence theorem tells us necessary and sufficient conditions for a finite difference scheme to
be convergent. The theorem states that for a well-posed PDE problem, a consistant finite difference approximation
will converge if and only if it is stable. So it should be thought of as

consistency + stability ⇐⇒ convergence

The theorem will be useful for finding difference schemes for the one-way wave, heat equation, and wave equation.
However it will not be useful for conservation laws, as the solutions to such problems may not be unique.

7.1.4 Von Neumann Analysis

This method for determining the stability of a method relies on the fact that the L2 (discrete and continuous)
norm is preserved under the Fourier transform, and that in the Fourier domain, derivatives become multiplication
by iω. For a linear, constant-coefficient PDE, the finite difference scheme (when written in an update-rule form)
will turn out to be

v̂n+1(ω) = g(hω, k, h)v̂n(ω)

we typically write hω = θ. So the stability of a method will depend nicely on the initial conditions if and only if
|g| ≤ 1. Von Neumann analysis is the process of finding g.
The quickest way to do this to to plug in vnm → gneimθ into the scheme and then solve for g. Note that an
increment of the index in the space domain shows up as multiplication by eiθ in the Fourier domain.
The full theorem for stability with Von Neumann analysis states that if g = g(θ) the method is stable if and only
if |g| ≤ 1. And if g = g(θ, h, k), the method is stable if and onnly if

|g(θ, h, k)| ≤ 1 + αk

Another important thing to remember is that the stability of a scheme will be independent of f . So when
determining stability, we typically set f = 0 for simplicity.

If we have a problem where a = a(x), then technically, the analysis in the Fourier domain will not work the
same as the Fourier transform of a will not be the same as a and we will get a convolution in general. However,
we can still analyze this problem using Von Neumann analysis if we consider the frozen coefficient problems
for every possible value of a. If a scheme is stable for every frozen coefficient problem, that is the problem where
we consider a fixed, then the scheme will be stable for the actual problem. So we can treat a as a constant until
the Von Neumann analysis is complete and then derive a condition on aλ that will allow the scheme to be stable
for all a.
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7.1.5 L∞ Analysis

The definition of stability is actually independent of the choice of norm, so a scheme will still satisfy the Lax-
Richtmyer Equivalence Theorem if it is stable for a norm other than the L2 norm. In particular, it may be helpful
to consider the L∞ norm given by

||vn||∞ = max
m

|vnm|

The L∞ can be conducted by writing vn+1
m as a function of vnm−1, v

n
m, vnm+1 and then taking the L∞ norm of both

sides. If we can bound ||vn+1||∞ by c||vn||∞, where c ≤ 1, the scheme will be stable.
This is a useful method for analyzing nonlinear problems, including conservation laws. It can be used for the
one-way wave equation when a = a(x).

7.1.6 Symbol Analysis

The symbol of a differential operator, p(s, ξ) is given by

P (esteiξx) = p(s, ξ)esteiξx

The symbol of a differential operator can be used to determine if the problem posed by the operator is well-posed.
In particular, it can be used to determine if the problem

Pu = 0

is well-posed. It can be determined by finding the roots of p(s, ξ) in s. That is the values q(ξ) such that
p(q(ξ), ξ) = 0. Then if Re(q(ξ)) ≤ q̄ for some q̄, the PDE is well-posed, in the sense that the solution will not
blow up. For linear PDEs, this is equivalent to examining the equation in the Fourier domain, and making sure
the solution

û(t, ξ) = eq(ξ)tû0(ξ)

does not run off to ∞ as we let ξ ∈ R.
The symbol for a difference operator is analogously defined to be pk,h(s, ξ) where

Pk,h(e
skneimhξ) = pk,h(s, ξ)e

skneimhξ

If we let rk,h(s, ξ) be the symbol for Rk,h, then a difference scheme of the form

Pk,hv = Rk,hf

to solve the equation
Pu = f

is consistent if and only if
pk,h(s, ξ)− rk,h(s, ξ)p(s, ξ) = O(hp) +O(kq)

where p, q > 0.

7.1.7 Common Schemes and their Stability

The Lax-Friedrich Scheme is given by

vn+1
m − 1

2 (v
n
m+1 + vnm−1)

k
+ a

vnm+1 − vnm−1

2h
= fn

m

To analyze the stability of this scheme, we plug in gneimθ to get

gn+1eimθ − 1
2 (g

nei(m+1)θ + ei(m−1)θ)

k
+ a

gnei(m+1)θ − gnei(m−1)θ

2h
= fn

m

Now we set fn
m for simplicity. Dividing the above expression by gneimθ gives

g − 1

2
(eiθ + e−iθ) +

aλ

2
(eiθ − e−iθ) = 0
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Solving for g gives

g =
1

2
(eiθ + e−iθ)− aλ

2
(eiθ − e−iθ) = cos(θ)− iaλ sin(θ)

Then
|g|2 = cos2(θ) + a2λ2 sin2(θ)

which will be less than 1 if and only if |aλ| ≤ 1. So the stability conditions for Lax-Friedrich is the same as the
CFL condition.

The Crank-Nicolson Scheme is given by

vn+1
m − vnm

k
+ a

vn+1
m+1 − vn+1

m−1 + vnm+1 − vnm−1

4h
=

fn+1
m + fn

m

2

This is an implicit scheme, but the stability can be found in the same way using Von Neumann analysis. We plug
in vnm → gneimθ and simplify (using f = 0) to get

g − 1

k
+ a

geiθ − ge−iθ + eiθ − e−iθ

4h
= 0

and we can find g to be

g =
1− aλ

2 i sin(θ)

1 + aλ
2 i sin(θ)

which will have |g| = 1 for any aλ. So this scheme is unconditionally stable. The Crank-Nicolson scheme is
also accurate to order (2, 2), that is order 2 in time and 2 in space.

The Lax-Windroff Scheme is given by

vn+1
m − vnm

k
+a

vnm+1 − vnm−1

2h
− a2k

2

vnm+1 − 2vnm + vnm−1

h2

=
1

2
(fn+1

m + fn
m)− ak

4h
(fn

m+1 − fn
m−1)

The amplification factor, g can be found for this scheme to be

|g|2 = 1− 4a2λ2(1− a2λ2) sin4(
θ

2
)

which will be less than 1 provided the CFL conditions are met, i.e. that |aλ| ≤ 1.

7.1.8 Higher Dimensional Analogues

There may be higher-dimensional versions of the one-way wave equation such as those of the form

ut + a(t, x, y)ux + b(t, x, y)uy = f(t, x, y)

The method of characteristics will work the same for the one-dimensional case, except that we will have x′(t) =
a(t, x, y) and y′(t) = b(t, x, y) and the well-posedness will depend on x′ and y′ on the boundaries for x and y
respectively.
The higher-dimensional Lax-Friedrich Scheme (for 2 spacial dimensions) can be formulated as

vn+1
m,l − 1

4 (v
n
m+1,l + vnm−1,l + vnm,l+1 + vnm,l−1)

k
+ a

vnm+1,l − vnm−1,l

2hx
+ b

vnm,l+1 − vnm,l−1

2hy
= fn

m

So rather than taking the average of 2 values in the forward time difference, we take the average of 4.
The higher-dimensional Crank-Nicholson scheme (for 2 spacial dimensions) can be formulated as

vn+1
m,l − vnm,l

k
+

1

2

(
a
vnm+1,l − vnm−1,l

2hx
+ b

vnm,l+1 − vm,l−1

2hy

)
+

1

2

(
a
vn+1
m+1,l − vn+1

m−1,l

2hx
+ b

vn+1
m,l+1 − vn+1

m,l−1

2hy

)
= 0

However, most of the time on the qual, if presented with a multi-dimensional equation, the best solution is often
transforming the equation into a system of PDEs, each of which have a simpler form.
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7.2 Conservation Laws

A conservation law is a PDE of the form
ut + (f(u))x = 0

For some smooth f . There is also the ”vanishing viscosity version” of the conservation law which will take the
form

ut + (f(u))x = ϵuxx

and we will want to convergent method for when ϵ → 0. These problems are also given with smooth initial data
u(x, 0) = u0(x). The first thing to note about these problems is technically, they are not well-posed. This is
because solutions to the problem may not be unique. Because of this, the Lax equivalence theorem no longer
applies. In the qual we will typically be asked to construct a convergent finite difference scheme which converges
for t ≥ 0, even as ϵ → 0.

7.2.1 Convergence of Conservation Law FD Schemes

First I should note that the CFL conditions for conservation laws state that a necessary condition for convergence
of a scheme is that

|λf ′(u)| ≤ 1

for any u in the range that numerical approximation can take.
Our main (and pretty much only) theorem for convergence of a finite difference scheme for a conservation law

is theorem 15.2 in [5]. This theorem says that for a finite difference scheme to converge on a conservation law we
need 3 things:

1. The numerical method can be written in conservative form with a Lipschitz continuous numerical flux

2. The numerical flux is consistent with the conservation law we wish to solve

3. The method is TV-stable (total-variation stable)

In this case, converge means that d(Uk,W ) → 0 as k → 0, where Uk is the numerical solution and W is the set
of solutions to the actual PDE. So it is important to note that the numerical approximations won’t necessarily
head towards 1 solution and without further requirements, we do not know what solution it will head towards.
But it will converge. The TV-stability of the method ensures that the functions output by our numerical scheme
live in a compact space, meaning that we can be sure the Cauchy sequence given by our scheme will converge.
First, the conservation form of a finite difference scheme is the following

vn+1
m = vnm − λ

(
F (vnm, vnm+1)− F (vnm−1, v

n
m)
)

with λ = k
h . The function F is called the numerical flux. Note that this is only the definition for a one-step

function, but that should be sufficient for the qual.
The second condition is that the numerical flux is consistent with the conservation law we wish to solve and it is
Lipschitz continuous. We actually check both these at the same time, by verifying the below inequality

|F (v, w)− f(u)| ≤ Kmax{|v − u|, |w − u|}

for some constant K that may depend on u. Once the numerical flux is determined, this is typically not too hard
to verify, so long as the original f is Lipschitz.
Finally, to check the method is TV-stable, we have a few possibilities. Checking directly is difficult and will
generally not be done. It is much easier to check slightly stronger conditions that imply TV stability, meaning
that the total variation of all approximations vn is bounded by a fixed constant (usually denoted R). The first
condition we could check is that the method is total variation diminishing, meaning that TV (vn) ≤ TV (vn−1)
for all n. In that case, the total variation of any time step would be bounded by the total variation of the first.
A slightly easier condition to check is that the method is l1-contracting. This means that for any vn, wn

numerical solutions to the conservation law obtained by our method, we have

||vn+1 − wn+1||1 ≤ ||vn − wn||1

12



where || · ||1 is the l1 norm defined by

||vn||1 = h

∞∑
j=−∞

|vnj |

or a similarly truncated sum if the grid is finite. From [5] we know that an l1-contracting method is total variation
diminishing, meaning it is TV-stable.
However the easier way to verify that a method is TV-stable is to show that the method is monotone. This
means that

vnm ≥ wn
m ∀m =⇒ vn+1

m ≥ wn+1
m ∀m

This can be checked rather easily by writing the method as

vn+1
m = H(vnm−1, v

n
m, vnm+1)

and verifying
∂H
∂vnj

≥ 0

for all j. This is much easier to do than verifying l1 stability, but it can only be done for first order accurate
methods. Namely, the Lax-Friedrich method will be monotone (as it is first-order accurate). But if we need a
second order accurate method it will not be monotone.

7.2.2 Example Method: Lax-Friedrich

For solving the PDE
ut + (f(u))x = 0

the Lax-Friedrich method can be defined analogously to the advection case as

vn+1
m =

1

2
(vnm−1 + vnm+1)−

λ

2
(f(vnm+1)− f(vnm−1))

where λ = k/h. This will then have numerical flux given by

F (vnm, vnm+1) =
1

2λ
(vnm − vnm+1) +

1

2
(f(vnm) + f(vnm+1))

Then we can see

vn+1
m = vnm − λ

(
F (vnm, vnm+1)− F (vnm−1, v

n
m)
)

= vnm − 1

2
(vnm − vnm+1)−

λ

2
(f(vnm) + f(vnm+1)) +

1

2
(vnm−1 − vnm) +

λ

2
(f(vnm−1) + f(vnm))

= vnm − vnm +
1

2
(vnm+1 + vnm−1) +

λ

2
(f(vm−1)− f(vnm+1))

=
1

2
(vnm+1 + vnm−1)−

λ

2
(f(vnm+1)− f(vnm−1))

recovering the original method. If instead we have the PDE

ut + (f(u))x = ϵuxx

Then we use the modified Lax-Friedrich scheme given by

vn+1
m − kvnm − 1−k

2 (vnm+1 + vnm−1)

k
+

f(vnm+1)− f(vnm−1)

2h
= ϵ

vnm+1 − 2vnm + vnm−1

h2

13



For this method to converge as ϵ → 0, we must have that ϵ = h2

2 . To write this out in conservative form we note
that

vn+1
m = kvnm +

1− k

2
(vnm+1 + vnm−1) +

k

2h
(f(vnm+1)− f(vnm−1)) +

ϵk

h2
(vm+1 − 2vnm + vnm−1)

= vnm +
1− k

2
(vm+1 − vnm − vnm + vnm−1) +

k

2h
(f(vnm) + f(vm+1)− (f(vnm) + f(vnm−1)))

+
ϵk

h2
(vm+1 − vnm − (vnm + vnm−1))

= vnm + λ
1− k

2λ
(vm+1 − vm) +

λ

2
(f(vnm) + f(vnm+1)) +

ϵλ

h
(vnm+1 − vnm)

−
(
λ
1− k

2λ
(vnm − vnm−1) +

λ

2
(f(vnm−1 + f(vnm))) +

ϵλ

h
(vnm + vnm−1)

)
= vnm − λ

(
F (vnm, vnm+1)− F (vnm−1, v

n
m)
)

if F (vnm, vnm+1) =
1−k
2λ (vnm+1 − vnm) + 1

2 (f(v
n
m) + f(vnm+1)) +

ϵ
h (v

n
m+1 − vnm).

Now we will show for the vanishing viscosity case, that the scheme converges via theorem 15.2 in [5]. We have
already written the method in conservation form. We merely need to check that the numerical flux is consistent
with f . To do this, note that

|F (v, w)− f(u)| =
∣∣∣∣1− k

2λ
(w − v) +

1

2
(f(v) + f(w)) +

ϵ

h
(w − v)− f(u)

∣∣∣∣
≤
∣∣∣∣(1− k

2λ
+

ϵ

h

)
(w − u+ u− v)

∣∣∣∣+ 1

2
|f(v)− f(u) + f(w)− f(u)|

≤
(
1− k

2λ
+

ϵ

h

)
(|w − u|+ |v − u|) + 1

2
|f(v)− f(u)|+ 1

2
|f(w)− f(u)|

Now, here we must assume that f is a Lipschitz function with Lipschitz constant K. Giving us

≤
(
1− k

2λ
+

ϵ

h
+K

)
max{|w − u|, |v − u|}

Note that ϵ = h2/2 and λ is constant, so the multiple of the maximum above is bounded by a constant. Thus the
numerical flux is consistent with the PDE.
Finally, we can check that the method is TV stable by checking it is monotone preserving. To do this, we write

vnm = H(vnm−1, v
n
m, vnm+1)

and check that ∂H/∂vnm ≥ 0, ∂H/∂vnm−1 ≥ 0, ∂H/∂vnm+1 ≥ 0. Based on our equation above we get that

H(vnm−1, v
n
m, vnm+1) = kvnm +

1− k

2
(vnm+1 + vnm−1) +

k

2h
(f(vnm+1)− f(vnm−1)) +

ϵk

h2
(vm+1 − 2vnm + vnm−1)

Then
∂H
∂vnm

= k − 2ϵk

h2
≥ k − k = 0

because ϵ = h2/2. We also have

∂H
∂vnm−1

=
1− k

2
− λ

2
f ′(vnm−1) +

ϵk

h2
=

1

2
− k

2
− λ

2
f ′(vnm−1) +

k

2
=

1− λf ′(vnm−1)

2

Using the CFL condition |λf ′(u)| ≤ 1 for all u we get

∂H
∂vnm−1

≥ 0

And finally

∂H
∂vm+1

=
1− k

2
+

λ

2
f ′(vnm+1) +

ϵk

h2
=

1

2
− k

2
+

λf ′(vnm+1)

2
+

k

2
=

1 + λf ′(vnm+1)

2
≥ 0

So the scheme is monotone preserving and thus TV-stable. Then by our theorem, we know that the scheme will
converge to a solution of the PDE.
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7.2.3 Second Order Schemes

Sometimes the qual problem will ask you to provide a second order accurate scheme. If this is the case, they
will also ask for a second order accurate scheme (see S21 Problem 6). An important note with this case is that
a second order accurate scheme will not converge for large T . We cannot show that a second order accurate
scheme will be TV-stable, so even though the scheme is stable in the traditional sense, the convergence will be
violated as soon as the Lax equivalence theorem fails to apply.
The question will typically ask you to give an estimate on k

h in order for the scheme to converge for small time
T . This estimate will just be the CFL condition, i.e.

|f ′(u)
k

h
| ≤ 1

for all u. The problem will also usually ask why you cannot get convergence for large T . The answer to this is
because shocks and rarefactions mean that solutions to the PDE will no longer be continuous and then the CFL
condition will no longer apply. This is because the linearization of the conservation law will no longer be valid,
but it should be sufficient to say that shocks and rarefactions make the PDE no longer well-posed.
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