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Figure 1: Diagram depicting how crab cavities alter the beam collision at the interaction point.
Note that the relative scale of ovals is off compared with the EIC bunches. If a single bunch was
as thick as a pencil, it would be 10m long. Image taken from [2].

1 Introduction

The collision rate is an important parameter for particle accelerators, since a higher rate shortens

the time to discoveries. New technologies are required to significantly increase the collision rate in

new and updated accelerators. One such technology is crab cavities. Both the High-Luminosity

Large Hadron Collider (HL-LHC) and the Electron Ion Collider (EIC) will implement them.

The specifications for their EIC implementation can be found in [1].

Crab cavities are electromagnetic cavities with a resonant frequency in the RF part of the

spectrum. Their purpose is to apply a tilt to the beam as it approaches its collision point. The

beam will move sideways (like a crab), leading to a better overlap at the interaction point. A

visual diagram of this can be seen in figure 1. This must be done just before the interaction

point. Afterwards, the beam must be uncrabbed to return to its original orientation. Their

effective use can increase luminosity by an order of magnitude [3].

To give the beam the desired kick, the cavity’s voltage is oscillated at a high frequency (in

the RF spectrum), on the order of hundreds of MHz. Since the oscillation of the cavity voltage
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will go through many cycles as the beam completes one turn, the beam can take advantage of

this by organizing the particles into small packets, called RF bunches. The oscillation is timed

so the beam coming through will get a voltage centered around the zero crossing of the sine

wave. This way, the beam centroid is unaffected, whereas the head and tail receive kicks with

opposite signs, leading to the bunch rotation. If the bunch is much smaller than the RF period,

then to good approximation the voltage around the zero crossing is linear. This gives a uniform

tilt of the beam.

Due to the micrometer and nanosecond precision that these cavities must operate at, their

voltage magnitude and phase must be heavily regulated to ensure efficient operation. Cavity

regulation is carried out through the low-level radio frequency (LLRF) system. Careful design

of this system is tantamount to the cavities’ success.

The first use of crab cavities in a circular accelerator was in the KEKB accelerator in Japan

in 2007. The cavities achieved marginal success, largely due to operational complexities.

The EIC will employ crab cavities to adjust the beam tilt by 25 mrad at the interaction point.

This will happen for both the electron storage ring (ESR) and hadron storage ring (HSR). For

both rings, there are two sets of crabbing and uncrabbing cavities: 8 cavities operating at 197

MHz and 4 cavities operating at 394 MHz. This is to account for the fact that the beam is too

long to get a linear kick from the 197 MHz cavity. The front and tail of the beam extend slightly

into the nonlinear region of the sinusoidal voltage oscillation. The 394 MHz cavity is placed to

reduce this nonlinearity, giving the beam a more uniform kick [1].

2 Motivation

The EIC LLRF system has 3 main functions: to keep RF noise minimized, to regulate the

crabbing and uncrabbing voltages (while keeping their sum at 0), and to reduce the crab cavity

impedance to prevent transverse instabilities.

2.1 Control Architecture

To accomplish this, the LLRF system will implement a high-bandwidth proportional controller

and a low bandwidth integral controller. The high-bandwidth controller will respond to higher
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frequency changes, within a turn, while the low-bandwidth controller acts as a low-pass filter.

This will respond to changes in the system on the order of many turns and will maintain the

DC value of the voltage constant. Because of the slow response time of the integral controller,

the proportional controller is mainly determining the system stability, both in transient beam

loading and in impedance reduction. Thus, the proportional controller parameters are mainly

studied.

Dependent on more precise LLRF requirements, an additional one-turn feedback (OTFB)

controller and/or global controller will be implemented. The OTFB controller has high gain on

very close to the frequency of the revolution harmonics and very low gain elsewhere to increase

impedance reduction at those frequencies without reducing the RF loop stability margins. It

resembles an inverted comb filter. The quadrupole, sextupole and octupole magnets used in

any particle accelerator for focusing can only focus in one direction, while defocusing in the

other. This means that the beam will get narrower in the x-direction, while getting wider in the

y-direction. The magnets are always placed in a pattern of x-focusing followed by y-focusing to

keep both directions well managed. The repeated focusing and defocusing of the beam in either

of the transverse directions gives rise to an oscillation of beam about it’s ideal transverse position

at a known frequency, called the betatron frequency. The frequency is specified by the betatron

tune, given by νb = fb/frev, the ratio of the betatron frequency to the revolution frequency. For

the EIC, the betatron frequency is ∼ 0.22. The OTFB controller must take this into account by

placing its notches at the revolution harmonics ±fb. Each revolution harmonic will then have

two notches for the upper and lower betatron frequency offset, called the betatron sidebands.

An additional controller, known as the global controller has also been studied for its use in

the EIC. The global controller is an independent controller that samples the sum of the crabbing

and uncrabbing voltage and acts on the crabbing cavity. It is a low-bandwidth integral controller,

which accordingly acts over the time-scale of many accelerator turns. The lower bandwidth is

chosen as to avoid interaction with the main LLRF controllers and create an unwanted feedback

loop. Its main purpose is to act in the case of a cavity loss, in order to control the other cavity

before the beam is dumped.
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2.2 RF noise reduction

The transverse emittance is the area of the beam’s phase-space and quantifies the bunch’s trans-

verse size. The control system inevitably injects noise into the system, causing the emittance of

the beam to grow over time, characterized by the emittance growth rate [4]. In the case of the

ESR, the synchrotron radiation produced by the acceleration of charged particles (the electrons)

counteracts this emittance growth.

For the HSR, the situation is more difficult. Intrabeam scattering (IBS) creates an addi-

tional source of emittance growth along with that produced by RF noise. On top of that, the

synchtrotron radiation damping time is extremely slow. To counteract both these effects, a

hadron cooling system is implemented. This cooling system is already designed to counter the

effects of IBS, so it is important to ensure that the emittance growth created by the RF noise

is not too high [5].

2.3 Voltage Regulation

The beam tilt and transverse position are given by the equations

∆θ

2
=

2πfcc∆A
√
βccβ∗

cEb
(1)

x =
c

2πfcc
tan

(
θ

2

)
∆ϕ (2)

From equation 1 the beam tilt is directly proportional to the voltage amplitude deviation (∆A).

From equation 2 the transverse position is directly proportional to the voltage phase deviation

(∆ϕ). Thus to maintain a proper beam tilt of 25 mrad and reasonable transverse position, the

voltage amplitude and phase must be precisely regulated.

The beam’s electromagnetic field will disturb the cavity each time the beam passes through,

known as transient beam loading. This disturbance can be modelled, treating the cavity as

an LRC circuit. The disturbance, seen by the cavity each time the beam passes through, is

proportional to the transverse position offset, ∆x. There are other controllers around the loop

that will reduce ∆x after the uncrabbing cavity, but if the offset is greater than those controllers

can respond to, there could a runaway effect as ∆x grows with ∆ϕ. Therefore an important
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metric in studying the transient beam loading is whether the transverse position offset deviate

beyond the threshold for which the other controllers around the loop can manage it.

Along with the disturbances created by beam loading, the LLRF system must respond to

noise in the transverse position. This is caused from noise in the beam sampling (quantization

error is the dominant effect here) and error in the placement of the cavity in the beamline,

inducing a constant transverse position error. This effect is similar to that of the accelerating

system, but with some small differences described in [6].

2.4 Impedance Reduction

As a charged particle passes through the crab cavity, it creates a “wake field”, an electromagnetic

field disturbance following the particle. These wake fields will then go on to affect the next

particle in the bunch, leading to a further field disturbance. These are known as couple-bunch

instabilities and are described in [7].

Viewing this in the frequency domain, certain modes of bunch motion will be excited by

these accumulating wake fields, and may cause the cavity voltage to grow over time. Because

the strength of these wake fields is determined by the beam current (as having more particles

in the beam would inevitably create more wake fields), this can be thought of as more complex

case of Ohm’s law,

Vwake = IbZcav

Where Vwake is the wake field voltage, I is the beam current and Zcav is the transverse impedance,

capturing cavity’s interaction with the beam that excites these modes. This impedance is de-

termined both by the cavity and the controller parameters and will generally be frequency

dependent.

If the wake fields are too powerful, they will strongly couple the motion of different bunches.

If the growth rate due to the wake field interactions is greater than the natural decay rate of

the unperturbed beam, the beam will become unstable. Because the beam current is directly

related to the number of collisions and thus the data collected, it is externally set. Thus, to

reduce these wake field interactions and improve the stability of our system, we must reduce the

impedance Zcav.
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Each of these requirements for the control system impose restrictions and trade-offs on the

controller parameters. It is expected and has already been found in [8] that these trade-offs will

lead to conflicting optimizations for the controller parameters. The EIC is still being designed,

so it is early to optimize the controller parameters. Still, understanding these trade-offs may

be important in making decisions about the design of other accelerator components. Thus, this

work is more focused on obtaining qualitative relationships between the parameters and the

controller requirements, as well as informing other design aspects for the EIC that must be

determined sooner (such as transverse position noise thresholds).

3 Previous Work

3.1 RF Noise Reduction Study

The transverse emittance growth rate can be determined from the following equations, taken

from [5] (ϵx,y
dt

)
∆ϕ

=
1

Ncavβ∗

[(
ecθccfrev
4ωRF

)2
]
C∆ϕ(σϕ)

2σ2
∆ϕ

frev
(3)

(ϵx,y
dt

)
∆A

=
1

Ncavβ∗

[(
ecθccfrev
4ωRF

)2
]
C∆A(σϕ)

4σ2
∆A

frev
(4)

These give us the transverse emittance growth rate (in x or y) due to phase noise (∆ϕ) or

amplitude noise (∆A). Here Ncav is the number of cavities, β∗ is the beta function at the

interaction point, c is the speed of light, e is the charge of an electron, θcc is the crabbing

angle (25 mrad in our case), σϕ is the RMS bunch length, frev is the revolution frequency (78

kHz in our case), ωRF is the cavity RF frequency, σ2
∆ϕ and σ2

∆A are the phase and amplitude

noise powers sampled by the beam. The term C∆ϕ(σϕ) or C∆A(σϕ) are functions of the bunch

length σϕ and show the scaling of the phase noise or amplitude noise effects with the bunch

length. Using equations 3 and 4, one can obtain a target noise power threshold based off a

target emittance growth rate. Using a target emittance growth rate of 1%/hr, the target noise

power for different operational modes of the EIC can be seen in table 1.

The noise power thresholds given for all the energies of the HSR are below the threshold of

current electronic technology. Thus, the crab cavity RF noise level cannot be maintained at an
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Mode σ∆ϕ[µrad] σ∆A[1e-6]

ESR 5 GeV 805 12700
ESR 10 GeV 860 13600
ESR 18 GeV 548 7060
HSR 41 GeV 3.09 10.1
HSR 100 GeV 2.69 9.36
HSR 275 GeV 1.75 7.07

Table 1: Target noise threshold for different energy levels of the EIC. Values are taken from [5].

Beam

Pickup

Mean

Kicker

Filter

Head

Tail

+

−

Phase FB

Amp FB

+

Crab

Cavity

Transverse Damper

Gain

Figure 2: Proposed crab cavity RF noise feedback system. Taken from [5].

allowable level without additional controllers. One such controller was designed and studied in

simulation. The system would involve sampling the head and tail bunch position, using those

to estimate the bunch tilt and offset and adjusting the crab cavity current accordingly.

The proposed RF noise feedback system can be seen in figure 2. The system was studied

for it’s effect on the transverse emittance growth rate, both in the system’s gain and delay.

As expected, the emittance growth rate decreases with increased system gain both from the

amplitude noise and phase noise. The system was found to be less effective as the tune spread

was increased. With the addition of measurement noise, a loss in the system’s effectiveness at

higher gains was seen. This is expected as the higher gains will greatly amplify measurement

noise and that effect will eventually overpower the benefit of the increased gain. Thus, there

is a local minimum in the emittance growth rate where below such a minimum, the growth

rate is dominated by the crab cavity RF noise and above such a minimum, the growth rate is

dominated by the measurement noise. This is seen in figure 3.

The nature of the measurement noise and the system’s sensitivity to it will depend highly on

the pickup location and specifications. As such, the placement and specifications of the pickup

should be carefully quantified. The LLRF system design will greatly affect the noise that is
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Figure 3: Transverse emittance growth rates plotted against the RF noise feedback gain in the
presence of measurement noise. 3 different RF and measurement noise levels are shown. Taken
from [5].

amplified and reducing the LLRF bandwidth will generally lower the noise that is integrated.

To meet such small noise thresholds for the HSR, the LLRF bandwidth should be lowered as

much as possible.

3.2 Transient Beam Loading Study

A simulation was developed and tested to test the effect of the controller parameters on the

controller’s voltage regulation ability. The simulation considered 2 cavities, one crabbing and

one uncrabbing (although the effect of multiple cavities can be seen by scaling the transmitter

current) and their interaction with a the beam. It was implemented in MATLAB and Simulink,

based on a different simulations used to understand the transient beam loading the accelerating

cavities. The transient beam loading was modeled via the equations in [9]. More specifically,
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the transmitted and reflected beam current through the crab cavity was modelled as

Jg =

[
V⊥

2(R/Q)⊥

(
1

Qext
+

1

Q0

)
+

xω

c
Ib,DCFb sin(ϕ)

]
+

i
[xω
c
Ib,DCFb cos(ϕ)

] (5)

Jr =

[
V⊥

2(R/Q)⊥

(
1

Qext
− 1

Q0

)
− xω

c
Ib,DCFb sin(ϕ)

]
−

i
[xω
c
Ib,DCFb cos(ϕ)

] (6)

Where V⊥ is the cavity voltage (in general, time dependent), Qext and Q0 are the cavity and

external quality factors, (R/Q)⊥ is the ratio of the cavity resistance to it’s quality factor, ω

and c are constants of the cavity operation, and x is the transverse position deviation. In the

system x is related to the cavity phase via equation 2. It can be seen from equations 5 and

6 that the transmitted current phase will never be nonzero if the x-position is nonzero. So if

the transverse position deviation starts at 0, it will remain at 0. Because of this, the initial x

offset was important for studying the controller parameters. The two cases tested were that of

a constant initial x offset of 0.6mm and several levels of injected Gaussian noise in the x offset

values. In both cases, the proportional controller gain was adjusted and its effect on the systems

transients recorded.

From figure 4, 5, and 7 the transient in the voltage and the transverse position is increased as

the gain is decreased, as expected. Even in the worse cases, the transients were not at concerning

levels (several kV for the voltage, several µm for xIP , and several tens of nm for xoffset). The

transient power seen in figure 6 is a significant increase from the nominal value, but is not

concerning for the system operation. However, it must be taken into account for the transmitter

specifications.

The effect of the OTFB controller was also studied for its effects on the system’s transients,

yielding a significant increase in beam performance.

The OTFB gives us a significant improvement in the transverse position and transmitter

power usage. The OTFB cutoff frequency was studied but the effects on the voltage transients

were found to be negligible. Since the transients seen in the studies of the controller parameters
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Figure 4: Deviation in crabbing cavity voltage
magnitude from nominal value over one turn
for 3 different proportional gain values. Data
was taken using a constant initial x offset of
0.6mm. Taken from [6].

Figure 5: Deviation in transverse beam posi-
tion over a turn for 3 different proportional
gain values. Beam position xIP, is measured
after the crabbing cavity but before the un-
crabbing. Data was taken using a constant
initial x offset of 0.6mm. Taken from [6].

Figure 6: Transmitter power usage over a turn
for 3 different proportional gain values. Data
was taken using a constant initial x offset of
0.6mm. Taken from [6].

Figure 7: Deviation in transverse beam posi-
tion over a turn for 3 different proportional
gain values. Beam position, xoffset, is mea-
sured after the uncrabbing cavity. Data was
taken using injected Gaussian noise in the x
offset with an rms value of 100µm.
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are not concerning in any case, the decision of whether to implement the OTFB will depend more

on the requirements given by the RF noise reduction and the transverse impedance reduction.

Additionally, the effect of the global controller was studied for it’s ability to bring the cavity

voltage down in the case of a cavity loss. These studies and further discussion can be found in

[6].

4 Mathematical Formulations

4.1 Cavity Impedance

As described above, particles moving through the cavity field will produce a wake field, affecting

future particles. The evolution of these wake-fields in time must be regulated for the beam

to remain stable. Viewing this system in the frequency domain, we can consider the transfer

function

Z(ω) =
Vwf (ω)

Ibeam(ω)
(7)

where Vwf is the voltage produced by the wake fields and Ibeam is the beam current. So un-

derstanding the beam’s stability in the frequency domain is closely tied with understanding the

system’s impedance.

The cavities impedance can be simply modeled as an RLC circuit with a transfer function

given by

Hcav(ω) =
ωrRx

ω(1 + jQl(ωr/ω − ω/ωr))
(8)

also taken from [7] where Rx is the transverse impedance, ωri is the resonant frequency of the

cavity and Ql is the loaded quality factor for the cavity. This gives us the open loop impedance

for the cavity with no feedback. As seen in equation 8, this impedance grows asymptotically as

ω → ωr. For our beam system described by equation this would mean unbound growth for the

bunch phase and instability for the beam.

To reduce the impedance at this point, we implement a feedback controller given by the open

loop transfer function

Hfb(ω) = Gfbe
−j(δ∗ω+ϕ) (9)

where δ is the loop delay, ϕ is the loop phase error and Gfb is the feedback gain.
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Figure 8: Block diagram depicting RF feedback and OTFB and their interaction within the
system.

From figure 8 the relationships between the cavity voltage, control current and beam current

can be seen in terms of the transfer functions as

Icontrol = VcavHfb

Vcav = Hcav(Ibeam + Icontrol) = HcavIbeam +HcavHfbVcav

Vcav(1−HfbHcav) = HcavIbeam

Then the impedance is given by

Vcav

Ibeam
= Z =

Hcav

1−HfbHcav
(10)

The OTFB has a more complicated open-loop transfer function found in [10], Hcomb to

achieve the desired frequency response (a spike at the betatron sidebands of every revolution

harmonic). Because of its different interaction with the cavity, seen in figure 8 above, the OTFB

controller yields a closed loop transfer function for the impedance given by

Z =
Hcav

1−HfbHcav(1 +Hcomb)
(11)

This will yield not only a reduction in the fundamental resonance of the cavity, but a reduction

at each of the betatron sidebands of each revolution harmonic.
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4.2 Stability of Beam

Given a certain system transfer function, G(s) and controller transfer function, the closed loop

transfer function H(s) is given by

H(s) =
G(s)

1 +GH(s)

H(s) will go unstable at it’s poles, when 1 +GH(s) = 0. We can say that our system is stable

if it’s pole will never be hit for any frequency ω. This means that our system is stable if the

function 1 + GH(s) has no zeros. Defining Go(s) = GH(s) we can use Cauchy’s argument

principle to find any zeros.

Cauchy’s argument principle states that for a contour in the complex plane, γ encompassing

P poles and Z zeros of a complex function f(z), the contour f(γ) will encircle the origin P −Z

times. If we consider the following contour γ:

• Travelling from −Rj to Rj along the imaginary axis

• Travelling in a semicircular arc encompassing part of the right-half plane from Rj back

down to −Rj

then as we let R → ∞, the contour gamma will encompass the entire right-half plane. So the

contour Go(γ) will circle the origin P − Z times, where P is the number of poles of Go in the

right-half plane and Z is the number of zeros of Go in the right-half plane. Because we care

about the zeros of the function 1 +Go(s), we consider the number of times Go(γ) encircles −1.

Thus, we can say that the contour Go(γ) will encircle −1 clockwise nc + no times where nc is

the number of poles of the closed-loop system and no is the number of poles of the open loop

system.

In our case, our open loop system has no poles in the right-half plane (due to feedback),

so the transformation of our nyquist contour Go(γ) will encircle the point −1 clockwise exactly

nc times, indicating the number of closed loop poles our system has in the right-half plane.

Because our system is asymptotically stable, the portion of the nyquist contour travelling in

a semi-circular arc has a negligible effect as we increase R. So we only consider the contour
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generated from pluggin in all jω, where ω runs over all possible frequencies. In practice only

a limited range of frequencies are considered, as our system attenuates sufficiently for high

frequencies. So our system will be stable if this contour does not encircle −1.

To account for the coupled bunch instabilities, we must consider a slightly different situation.

To do this, we obtain an equation of motion from the beam over time by examining the coherent

force on the particles, given by

Fx(θ, t) = i
q2ω0

2πR

∞∑
k=−∞

(DkZx(k) + dk)e
i(kM+s)(θ−ω0t)−iΩt (12)

Here q2ω0

2πR is a constant related to the accelerator’s design, s is the coupled bunch mode being

considered, ω0 is the RF angular frequency, M is the number of bunches, Ω is the betatron

frequency, and Zx(k) is the transverse impedance (impedance for the cavity’s transverse voltage

in the x-direction), evaluated at (kM + s + νb)ω0 + Ω, the k’th mode of the cavity’s operating

frequency plus a shift due to the betatron tune. Here Dk is the k’th Fourier component of the

particles’ dipole magnetic moment.

A full derivation of the stability method can be found in [11] (although for a slightly different

system). The derivation goes on to obtain a matrix equation for the system’s frequency response

in terms of the external drive dk by considering only finitely many k values. The K matrix

generated will satisfy the equation

d = D−K(Ω)D = (1−K(Ω))D (13)

where d is the vector for the external drive, and K(Ω) is a matrix, where Kk,m is proportional

to the transverse impedance, Zx(k) and the DC beam current (the number of particles going

through the cavity per second multiplied by the charge of a single particle, q). Since dk is the

kth mode of the system’s drive in frequency space, it can be thought of as the system frequency

response for a particular mode. The equation can be loosely thought of as the unperturbed

beam dipoles (represented by the 1) on the right side, minus the perturbation due to beam

particles interacting with the cavity and each other via the wake fields. This interaction is

encompassed in K(Ω) for a finite number of modes considered. When K(Ω) is small, the drive

is just the unperturbed beam, and the system is stable. As K(Ω) grows, the contribution from
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the coupling of the beam particles via the wake field interactions eventually becomes greater

than the unperturbed beam. This crossover point is when det(1−K(Ω)) = 0.

Similar to a system’s transfer function, Re(det(1−K(Ω))) gives an estimate for the negative

of the growth rate over all nodes (since it is the natural dipole decay rate given by D minus the

growth rate given by K(Ω)D and Im(det(1−K(Ω))) is an estimate for the system’s oscillation

frequency. Similar to the nyquist criterion described above, the system will be stable if the the

complex contour given by det(1 − K(Ω)) as a parameterized curve in Ω does not encircle the

origin so the system will have no modes with a positive growth rate.

5 Simulation Description

The simulation consists of the interfacing of two models: one written by Dr. Mastoridis to

accurately model the crab cavity and controller impedance, and one written by Mike Blaskiewicz

at Brookhaven National Laboratory calculating the generalized nyquist criterion to determine

the beam’s stability.

5.1 Impedance generation

Implemented in MATLAB, the impedance is calculated in accordance to the formulation de-

scribed in section 4.1. In the accelerator the cavities operate at a much higher frequency than

the revolution harmonics (197 MHz vs. 78 kHz). The controllers’ input signal is demodulated

against the cavity’s operating frequency and the controllers’ output signal is then modulated

against the cavity’s operating frequency. This allows us to design the controllers’ frequency

response around 0 Hz rather than 197 MHz. Thus all frequency responses are reported centered

around zero. A frequency range of ±5MHz was chosen for study as it both encompasses many

revolution harmonics and extends to significant impedance fall-off. This justification can be seen

in figure 9.

The cavity’s impedance is calculated according to equation 8. Then from equations 10 and

11, the closed loop impedances are calculated, centered about zero. The difference impedances

can be seen in figure 9.

The simulation also allows us to check the stability of the system based on the frequency
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Figure 9: Impedance for the open loop cavity, closed loop with proportional feedback controller,
and closed loop with OTFB controller shown over the selected frequency range. The fundamental
resonance is reduced by several orders of magnitude by the feedback controller and the betatron
sidebands are reduced by an order of magntiude by the OTFB.

response of the cavity with the controllers. This is done using the nyquist criterion (described

in section 4.2). This is done by examining the transfer function between the beam’s output

current and the beam’s input current in a loop (different than the transfer function considered

in equation 7). An example of such a nyquist plot can be seen in figure 10.

The accelerator will have two sets of cavities: 8 cavities operating at 197 MHz and 4 cavities

operating at 394 MHz. Since these cavities are operating in series, their respective impedances

can be calculated separately and added together to get the total impedance.

5.2 Stability Determination

Taking in the impedance generated from the first code described in section 5.1, the second code,

implemented in fortran, computes the determinant of 1−K in equation 13 to get the system’s

complex frequency response for each evaluation frequency, Ω. The set of frequencies at which

to evaluate K is the same as the frequencies used to evaluate Z(ω) (described in section 5.1).

Since the impedance is given in a discrete array, the values are interpolated at frequencies not
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Figure 10: Nyquist plot generated from cavity, feedback and OTFB response. Here the contour
does not encircle −1, so the loop is stable by this metric.

given in the impedance array. As such, it is important to choose a frequency step size small

enough to capture the fast-changing behavior of the OTFB, seen in figure 9.

Similar approximations to [11] are made with regard to the truncation of the vectors in

equation 13. Only 3 positive and 3 negative frequency modes are considered (as the system’s

closed loop bandwidth is expected to fall off dramatically after this point).

Plotting the frequency response given by det(1−K(Ω)) over all evaluation frequencies as a

complex contour allows us to see the nyquist criterion for the system (described in section 4.2).

Assuming our system has no open-loop poles in the right-half plane for any mode, we know

that the system will be stable if the contour generated does not encircle the point 0. A sample

nyquist plot generated from this code can be seen in figure 11.

Since the frequency response of the system increases with the DC beam current, decreasing

the DC beam current will shrink the contour generated. Thus, any controller will be stable if

the DC current is lowered enough. The main metric we are concerned with is the maximum

allowed DC current, as it is proportional to the maximum number of particles in the accelerator.

By lowering the DC current until the nyquist plot generated is stable, we can determine the
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Figure 11: A nyquist plot generated by the simulation using the impedance generated from the
code described in section 5.1. Here it is clear that the system is unstable because the contour
encircles the point 0 (marked with a red ×). Also plotted is the unit circle to give an estimate
of the phase and gain margins.

maximum allowed DC current, effectively measuring how stable the system is with the given

controller architecture.

6 Results

The controller parameters studied included the feedback gain (Gfb above), the feedback phase

(ϕ in equation 9), the OTFB gain and the OTFB phase. For each parameter, the value was

varied over an operationally reasonable range, and the effect on the max current was observed.

As such, the edge values for each parameter actually correspond to an unstable or marginally

stable control loop. The maximum allowed currents with nominal controller parameters are

shown in table 2. The studies on the feedback controller parameters are shown in tables 3 and

4. The studies on the main OTFB system parameters are shown in tables 5 and 6.

In table 2, we can see that the addition of the OTFB on top of the RF feedback gives

us a significant increase in the maximum allowed current of a factor of ∼ 40. Although the
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Case No OTFB OTFB OTFB upper sideband OTFB lower sideband OTFB both cavities

Ib,max 1.3 50.5 0.05 5.5 33.6

Table 2: Ib,max for different baseline cases with nominal controller parameters. In all cases, the
RF feedback is on with a gain of 2500 and a phase deviation of 0◦. In all cases with OTFB, the
gain is set to 10 and the phase is set to 0.

(a) (b)

Figure 12: Impedance (a) and nyquist plot (b) for all the baseline cases overlaid. In the nyquist
plots the case of RF feedback with OTFB is small enough to not be visible. The cases of the
upper and lower sidebands have parts of their nyquist plots cut off, as the most prominent lobes
were too big to show with the other cases. But it can be seen that the case of the upper sideband
is encircling 0, where the case of the lower sideband is not. All cases were run with a current of
3.5 A.
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impedance at the betatron sidebands of the revolution harmonic is reduced by only a factor of

10, the system’s response is expected to depend on both the growth rate, which is proportional

to the impedance at the betatron sidebands, and the tune shift. It is expected that the addition

of the OTFB reduces both. The dependence of the stability of this system due to the tune

shift is still being investigated. As expected, the addition of the 4 cavities operating at 394 MHz

reduces the maximum allowed current by a factor of ∼ 1.5. This is because the additional cavities

increase the impedance by a factor of ∼ 1.5. Since the growth rate should be proportional to

Zx((kM+s+νb)ω0)−Zx((kM+s−νb)ω0), it is expected that including only the upper sideband

on the OTFB (the +νb) would significantly reduce the stability of the system while including

on the lower sideband (the −νb) would increase the stability of the system. Instead, both of

these cases are worse than the nominal OTFB, at different degrees. We suspect this is because

the asymmetric OTFB changes both growth rates and tune shifts. This will be investigated in

future work. These cases can also been seen in figure 12.

Gain 1000 2000 2500 3000 4000

Ib,max 20.7 41.2 50.5 61.6 81.7

Table 3: Ib,max with RF feedback gain.

Phase(◦) -15 -10 -5 0 5 10 15

Ib,max 2.6 5.6 23.4 50.5 32.0 14.2 7.5

Table 4: Ib,max with RF feedback phase.

Gain 1 5 10 15 20 30

Ib,max 9.3 27.8 50.5 75.8 61.6 11.4

Table 5: Ib,max with OTFB gain.

Phase(◦) -15 -10 -5 0 5 10 15

Ib,max 3.0 8.6 27.9 50.5 35.3 17.1 9.5

Table 6: Ib,max with OTFB phase.

From the studies of the feedback controller parameters we determine two relationships. From

table 3 we see that the maximum current increases with the feedback gain proportionally (if we
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(a) (b)

Figure 13: Impedance (a) and nyquist plot (b) for several cases of varying the RF gain. In all
cases, some of the larger stable modes are cutoff to better view the point at the origin. For these
cases the current was kept at 40 A, and no other controller parameters were changed from their
nominal value.

(a) (b)

Figure 14: Impedance (a) and nyquist plot (b) for several cases of varying the RF phase. For
these cases the current was kept at 30 A, and no other controller parameters were changed from
their nominal value.

double the gain, we see roughly a doubling of the max DC current). This is telling to the fact

that the system stability only depends on the first 3 or 4 modes. Only the impedance at those

modes will decrease inversely proportional with the RF gain. This can be seen in figure 13a.

Since the frequency response (in the K matrix of equation 13) is roughly proportional to both
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(a) (b)

Figure 15: Impedance (a) and nyquist plot (b) for several cases of varying the OTFB gain. In
all cases, some of the larger stable modes are cutoff to better view the point at the origin. For
these cases the current was kept at 60 A, and no other controller parameters were changed from
their nominal value.

the DC current and the impedance this would suggest that the stability of the system only seems

to depend on the impedance that is changing linearly with the gain, the first 3 or so modes. The

linear change in the systems response with the gain can be seen in figure 13b. Increases in the

feedback gain decrease the loop stability. From table 4 we see that both positive and negative

phase rotations decrease the transverse stability, shown by a lower DC current. Deviations from

0 phase generally decrease the loop stability as well.

The OTFB controller parameters study showed two more trends. From table 5 we see that

the maximum current increases roughly proportionally with the OTFB gain up to a gain of

about 15. After this point there seems to be a local maximum in Ib,max after which the max

DC current drops dramatically. This is unexpected behavior as increases in the OTFB gain

correspond to a decrease in the system impedance at the betatron sidebands of the revolution

harmonics. Since the stability of the system should only depend on the impedance sampled at

these frequencies (see equation 12), a decrease in the impedance at those frequencies should be

beneficial for the system’s stability. An explanation for the maximum in Ib,max is the fact that

the OTFB notches become narrower as the gain is increased. After a certain point, the notch is

so narrow that the tune spread (the spread in betatron frequency over the different bunches) is
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(a) (b)

Figure 16: Impedance (a) and nyquist plot (b) for several cases of varying the OFTB phase.
For these cases the current was kept at 37 A, and no other controller parameters were changed
from their nominal value.

greater than the width of the OTFB notch so many of the beam particles have a betatron shift

putting them outside the notch from the OTFB. These particles would then see a much higher

impedance and the OTFB would not be effective for them. We speculate that above a gain of

about 15, this effect overpowers the effect of the reduced gain, leading to a net loss in stability.

The narrowing of the OTFB notches can be seen in figure 17.

The OTFB phase showed a similar trend to the feedback phase in that both positive and

negative phase deviations resulted in a decrease in the maximum DC current. There was also

a similar asymmetry in that the positive phase rotations were slightly more stable than the

negative ones. Both positive and negative phase deviations lead to decreased loop stability.

7 Conclusions and Future Work

Our most important conclusions from the study are those seen in tables 2-6. The most significant

effect seen is that of changing either the RF or OTFB phase. Changing the gains generally

produced a proportional change in Ib,max, except for the specific case of the OTFB discussed

above. The expected beam current for the EIC is 2.5 amps for the ESR and 1 amp for the HSR,

much lower than any of the maxima found at nominal operation. The trends from this study
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Figure 17: Impedance of closed loop system with different OTFB gains. As the gain is increased,
the width of individual notches gets narrower.

give us an idea of how far from the nominal operation the controller parameters can go keeping

us above this expected current. This is especially important in the case of the RF gain, as the

nominal gain of 2500 might not be feasible for the EIC.

Many of these trends give demands on the controller parameters that are conflicting with

the results of [6] and [5]. Most concerning of these conflicts is the demand of [5] to lower the RF

feedback bandwidth, which may require a lower RF gain. Lowering the RF gain would likely

produce a similar decrease in the maximum stable beam current, which could drop us below

the expected EIC beam current. It may also be possible to lower the RF feedback bandwidth

without decreasing the gain, as the system’s stability seems to be dependent on only the first 3

or 4 modes (see discussion above in section 6). A choice must be made for each of the controller

parameters (especially the RF and OTFB gains) that balances the demands of the RF noise

with the impedance reduction presented here.

As more machine parameters become clearer and fully determined, the accuracy of this

simulation can be increased and its use, alongside other simulations of the EIC crab cavities will

be useful tools in designing the LLRF system.
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