EIC Crab Cavity Low-Level RF Design Research in the Physics Department

Trevor Loe

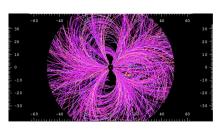
Cal Poly, San Luis Obispo

May 19th 2023

- Particle Accelerators
- 2 Crab Cavity Basics
- 3 Challenges
- 4 Our Simulation
- **5** Conclusions

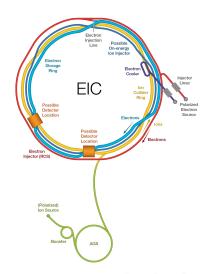
- 2 Crab Cavity Basics
- 3 Challenges

Particle Accelerators

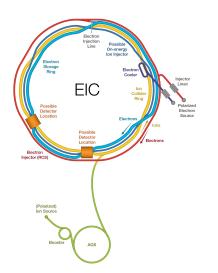

- 4 Our Simulation
- 6 Conclusions

Particle Accelerators

- Accelerators propel particles to near the speed of light
- Used for particle physics research
 - Discovering new particles
 - Testing new theories of particle interaction
 - Investigate dark matter theories
- Used as sources of high energy x-rays for experiments in biology, chemistry, medicine, materials science, and more.

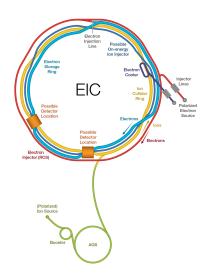


The Scale of the EIC


- The next big US accelerator, the Electron-lon Collider (EIC), at Brookhaven National Lab, NY (within the 2030s).
- 3.8 km circumfrence ring
- 10³⁴ collisions per square centimeter per second
- Particles going around $\sim 80,000$ times per second
- Estimated cost of \$1.6 - \$2.6 billion

Main Parts of a Particle Accelerator

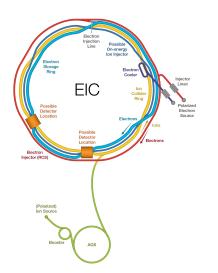
- Magnets (steering)
- Detectors (for collecting collision data)
- Electromagnetic cavities (for accelerating particles)



Particle Accelerators

Main Parts of a Particle Accelerator

- Magnets (steering)
- Detectors (for collecting collision data)
- Electromagnetic cavities (for accelerating particles)



Particle Accelerators

Particle Accelerators

TVIAITI I arts of a farticle Accelerato

- Magnets (steering)
- Detectors (for collecting collision data)
- Electromagnetic cavities (for accelerating particles)

New Technology

Particle Accelerators

- Future accelerators will incorporate new technologies to increase the energy of collision and the collision rate.
- An important developing technology are Crab Cavities
 - Used once before at KEKB in Japan in 2007 (with marginal success and a lot of operational issues).
 - Will be used in the High Luminosity Large-Hadron Collider (HL-LHC) at CERN, Geneva, Switzerland (≈2029).
 - They will also be used in the EIC. [2]
- The crab cavity field will have to be regulated precisely through the action of feedback systems → our research

7 / 26

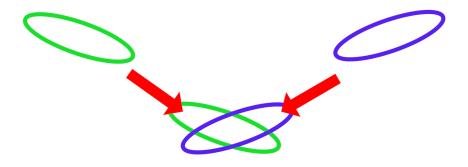
- 2 Crab Cavity Basics

- A crab cavity is an electromagnetic resonator that will rotate the particle cloud (bunch) around its center, so that it moves sideways (transversely), like a crab.
- After crabbing the beam, it must be uncrabbed
- Why would we want to do this?
 - More collisions → more data

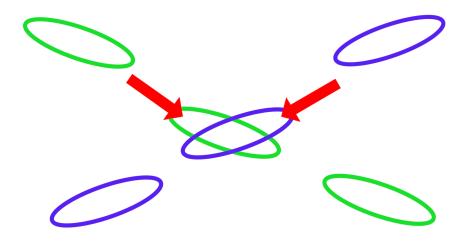
Trevor Loe Cal Poly, San Luis Obispo

ab Cavity

- A crab cavity is an electromagnetic resonator that will rotate the particle cloud (bunch) around its center, so that it moves sideways (transversely), like a crab.
- After crabbing the beam, it must be uncrabbed
- Why would we want to do this?
 - ullet More collisions o more data

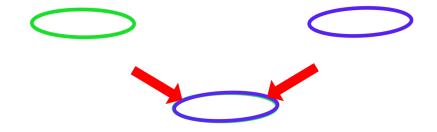

Trevor Loe Cal Poly, San Luis Obispo

Why Crab (uncrabbed collsion)

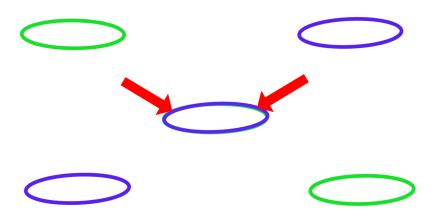


Why Crab (uncrabbed collsion)

Why Crab (uncrabbed collsion)

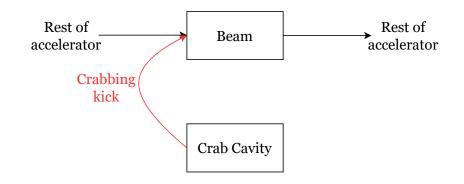


Why Crab (crabbed collsion)



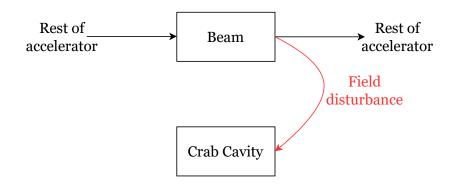
Why Crab (crabbed collsion)

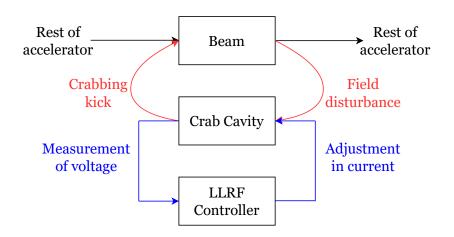
Why Crab (crabbed collsion)



- 1 Particle Accelerators
- 2 Crab Cavity Basics
- 3 Challenges
- 4 Our Simulation
- **5** Conclusions

The Drawbacks


- Crab cavities significantly increase the commissioning and operational complexity of the system
 - More things to go wrong
 - More interactions \rightarrow harder to model
- We have to move a millimeter thick beam going at the speed of light $(300,000,000\frac{\text{m}}{\epsilon})$ with micrometer precision

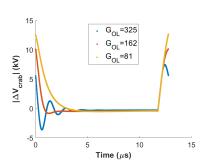


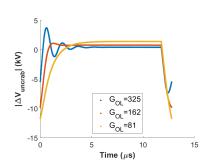
The Feedback Loop

The Feedback Loop (with controller)

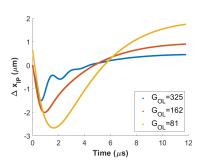
- 4 Our Simulation

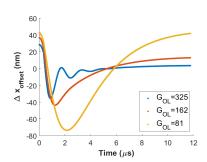
- We created and verified a simulation of the system including
 - Particle beam
 - Crabbing and uncrabbing cavities
 - Controller
 - Transmitter (affecting controller action)
- Implemented and run in MATLAB/Simulink
- We have two main takeaways from the simulation
 - Is controlling the loop possible with current technology?
 - If so, what is the best configuration for the controller? Metrics include beam performance and transmitter power requirements.

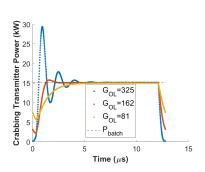


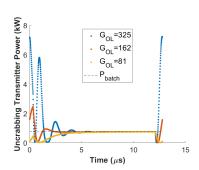

What we studied

- We have conducted extensive studies on the effect of
 - Different controller architectures
 - Different noise levels
 - Additional controllers (such as the One-turn feedback and a controller acting on crabbing/uncrabbing cavities concurrently)
- Due to time limitations I will present one quick example, the main controller gain effect on performance




Results




Results (cont.)

Results (cont.)

- 6 Conclusions

Additional studies

- We will combine the results from this work with two previous EIC studies from our group to design the crab cavity controller:
 - Study on the noise created by the accelerating cavities (completed) [1]
 - Study the beam/crab cavity interaction to determine bunch stability (ongoing)

Acknowledgements

- This work was conducted under Dr. Themis Mastoridis in the physics department
- This work was conducted alongside Trevor Hidalgo and Matti Toivola

References

[1] K. Smith, T. Mastoridis, P. Fuller, P. Mahri, and Y. Matsumura.

Eic transverse emittance growth due to crab cavity rf noise: Estimates and mitigation.

Feb. 2022.

[2] F. Willeke and J. Beebe-Wang. Electron ion collider conceptual design report 2021. Feb. 2021.

Image Sources

- https:
 - //www.clipartmax.com/download/m2i8b1Z5H7H7b1m2_
 view-all-images-1-pencil-transparent-background/
- https:
 //www.pngwing.com/en/free-png-zfnnv/download
- https://www.flickr.com/photos/brookhavenlab/with/ 51979821393/
- https://toppng.com/free-image/ vector-free-library-file-svg-wikimedia-commons-filered 225840
- Block diagrams made through https://www.draw.io
- Other images made through G.I.M.P

