RF Noise

Transverse Instabilities 000

Image: A math a math

Conclusions

EIC Crab Cavity Low-Level RF Design APS Far West Section, 2023

Trevor Loe

Cal Poly, San Luis Obispo

October 7th 2023

Trevor Loe

Crab Cavity Overview	Transient Beam Loading 00	RF Noise 00	Transverse Instabilities	Conclusions 00000

- **2** Transient Beam Loading
- **3** RF Noise
- **4** Transverse Instabilities
- **5** Conclusions

Cal Poly, San Luis Obispo

Trevor Loe

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
•000000	00	00	000	00000

2 Transient Beam Loading

3 RF Noise

4 Transverse Instabilities

6 Conclusions

- * ロ * * 個 * * 目 * * 目 * - 目 * つへの

Cal Poly, San Luis Obispo

Trevor Loe

- The next big US accelerator, the Electron-Ion Collider (EIC), at Brookhaven National Lab, NY (within the 2030s)
- 3.8 km circumference ring
- 8 crab cavities operating at 197 MHz, and 4 operating at 394 MHz
- Crab cavities will significantly increase the collision rate [4]

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
00●0000	00	00	000	00000
A Crab Cavity				

- An electromagnetic resonator that will rotate the particle cloud (bunch) around its center, so that it moves sideways (transversely), like a crab
- After crabbing the beam, it must be uncrabbed
- Why would we want to do this?
 - More collisions \rightarrow more data

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
00●0000	00	00	000	00000
A Crab Cavity				

- An electromagnetic resonator that will rotate the particle cloud (bunch) around its center, so that it moves sideways (transversely), like a crab
- After crabbing the beam, it must be uncrabbed
- Why would we want to do this?
 - More collisions \rightarrow more data

Crab Cavity Overview	Transient Beam Loading 00	RF Noise 00	Transverse Instabilities	Conclusions
Why Crab (unc	rabbed collision)			

Cal Poly, San Luis Obispo

Trevor Loe

Crab Cavity Overview	Transient Beam Loading 00	RF Noise 00	Transverse Instabilities	Conclusions 00000
Why Crab (un	crabbed collision)			
		\frown		

・ロト・日本・日本・日本・日本・日本

Cal Poly, San Luis Obispo

Trevor Loe

Crab Cavity Overview 000●000	Transient Beam Loading 00	RF Noise 00	Transverse Instabilities	Conclusions 00000
Why Crab (un	crabbed collision)			
			\mathcal{C}	
	N N			
\mathcal{C}				2

・ロト・日本・モート ヨー うへの

Cal Poly, San Luis Obispo

Trevor Loe

Crab Cavity Overview	Transient Beam Loading 00	RF Noise 00	Transverse Instabilities 000	Conclusions 00000
Why Crab (cra	bbed collision)			

Cal Poly, San Luis Obispo

Trevor Loe

Crab Cavity Overview	Transient Beam Loading 00	RF Noise 00	Transverse Instabilities	Conclusions 00000
Why Crab (crab	bed collision)			
\subset	>		\bigcirc)
		-		

▲□▶ ▲圖▶ ▲重▶ ▲重▶ 三重 めんぐ

Cal Poly, San Luis Obispo

Trevor Loe

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
00000●0	00	00	000	00000
The LLRF				

- The Low Level Radio Frequency (LLRF) Controller
 - RF feedback (proportional and integral controller)
 - One-turn Feedback
- Makes corrections on the order of kV
- Acts on each cavity individually

EIC Crab Cavity Low-Level RF Design

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
000000●	00	00	000	00000
The 3 Main Ch	allenges			

- Transient beam loading
 - Passing beam induces voltage on cavity
 - Cavity voltage magnitude \rightarrow beam tilt
 - Cavity voltage phase \rightarrow beam position
- RF Noise
 - Analog and digital RF devices give off RF noise
 - Noise leads to transverse beam size growth
- Transverse Coupled-Bunch Instabilities
 - Interaction with cavity impedance couples bunch transverse motion
 - Could lead to transverse oscillation growth (instability)
- Our research defines system requirements to achieve these objectives and studies potential trade-offs

Cal Poly, San Luis Obispo

▲ 同 ▶ → 三 ▶

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
000000●	00	00		00000
The 3 Main Cha	allenges			

- Transient beam loading
 - Passing beam induces voltage on cavity
 - Cavity voltage magnitude \rightarrow beam tilt
 - Cavity voltage phase \rightarrow beam position
- RF Noise
 - Analog and digital RF devices give off RF noise
 - Noise leads to transverse beam size growth
- Transverse Coupled-Bunch Instabilities
 - Interaction with cavity impedance couples bunch transverse motion
 - Could lead to transverse oscillation growth (instability)
- Our research defines system requirements to achieve these objectives and studies potential trade-offs

Cal Poly, San Luis Obispo

< (□) > < (=) >

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
000000●	00	00		00000
The 3 Main Cha	allenges			

- Transient beam loading
 - Passing beam induces voltage on cavity
 - Cavity voltage magnitude \rightarrow beam tilt
 - Cavity voltage phase \rightarrow beam position
- RF Noise
 - Analog and digital RF devices give off RF noise
 - Noise leads to transverse beam size growth
- Transverse Coupled-Bunch Instabilities
 - Interaction with cavity impedance couples bunch transverse motion
 - Could lead to transverse oscillation growth (instability)
- Our research defines system requirements to achieve these objectives and studies potential trade-offs

Cal Poly, San Luis Obispo

< (□) > < (=) >

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
000000●	00	00	000	00000
The 3 Main Cha	Illenges			

- Transient beam loading
 - Passing beam induces voltage on cavity
 - Cavity voltage magnitude \rightarrow beam tilt
 - Cavity voltage phase \rightarrow beam position
- RF Noise
 - Analog and digital RF devices give off RF noise
 - Noise leads to transverse beam size growth
- Transverse Coupled-Bunch Instabilities
 - Interaction with cavity impedance couples bunch transverse motion
 - Could lead to transverse oscillation growth (instability)
- Our research defines system requirements to achieve these objectives and studies potential trade-offs

Crab Cavity Overview	Transient Beam Loading ●○	RF Noise 00	Transverse Instabilities	Conclusions 00000

2 Transient Beam Loading

3 RF Noise

4 Transverse Instabilities

6 Conclusions

Cal Poly, San Luis Obispo

Trevor Loe

- Work presented in BNL-224087-2023-TECH [2]
- Insignificant effect on beam position
- Insignificant effect on cavity voltage
- Peak power can be double depending on controller parameters

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
	00	●0	000	00000

2 Transient Beam Loading

3 RF Noise

4 Transverse Instabilities

6 Conclusions

Cal Poly, San Luis Obispo

Trevor Loe

- Work presented in EIC-ADD-TN-026 [3]
- The transverse beam size would grow rapidly with expected RF noise levels and is much higher than the specifications
- We need to reduce the RF noise *and* design a dedicated feedback system to counteract it

< < >> < <</>

EIC Crab Cavity Low-Level RF Design

Trevor Loe

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
0000000	00	00	●00	00000

- 2 Transient Beam Loading
- 3 RF Noise
- **4** Transverse Instabilities

5 Conclusions

- ▲ ロ ▶ ▲ 団 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへの

Cal Poly, San Luis Obispo

Trevor Loe

Crab Cavity Overview	Transient Beam Loading	RF Noise 00	Transverse Instabilities ○●○	Conclusions 00000
Objective				

- We want to determine the max stable beam current as a function of LLRF parameters and architecture
 - Beam-cavity interaction is approximately proportional to impedance and *I_{beam}*
- We calculate the system's impedance for a certain configuration
- We estimate the resulting maximum Ibeam

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
	00	00	00●	00000
Results				

- The very high *Q*-factor resonance is significantly reduced by the RF FB and OTFB (at frequencies of interest)
- Most unstable mode -29 (center)
- Stable currents are 0.3 A (open-loop), 1.4 A (closed-loop), and 10.0 A (OTFB)

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
0000000	00	00	000	●0000

- 2 Transient Beam Loading
- 3 RF Noise
- 4 Transverse Instabilities

- * ロ * * @ * * 注 * * 注 * のへで

Cal Poly, San Luis Obispo

Trevor Loe

Crab Cavity Overview	Transient Beam Loading	RF Noise 00	Transverse Instabilities 000	Conclusions 0●000
Effect on LLRF [Design			

- We have completed the necessary studies to define LLRF specifications
 - RF noise is the most concerning effect
- We now need to explore trade-offs
 - For example, incorporate a low-pass filter on the RF FB to reduce RF noise while maintaining instability control

Crab Cavity Overview	Transient Beam Loading	RF Noise	Transverse Instabilities	Conclusions
	00	00	000	00●00
Acknowledgeme	ents			

- This work was conducted under Dr. Themis Mastoridis in the physics department
- Thank you to the other students I worked with: Trevor Hidalgo, Matti Toivola, and Paul Mahvi
- Thank you to Mike Blaskiewicz of Brookhaven National Lab

< < >> < <</>

Crab Cavity Overview	Transient Beam Loading 00	RF Noise 00	Transverse Instabilities	Conclusions 00000
References				

[1] M. Blaskiewicz.

Instabilities driven by the fundamental crabbing mode.

- [2] T. Mastoridis, K. Smith, T. Hidalgo, T. Loe, and M. Toivola. Time-domain simulation of the crab cavity/beam interaction.
- [3] K. Smith, T. Mastoridis, P. Fuller, and P. Mahvi. EIC transverse emittance growth due to crab cavity RF noise: Estimates and mitigation.
- [4] F. Willeke and J. Beebe-Wang. Electron ion collider conceptual design report 2021.

20 / 21

Crab Cavity Overview	Transient Beam Loading 00	RF Noise 00	Transverse Instabilities	Conclusions 0000●
Image Sources				

• https:

//www.clipartmax.com/download/m2i8b1Z5H7H7b1m2_ view-all-images-1-pencil-transparent-background/

- https: //www.pngwing.com/en/free-png-zfnnv/download
- https://www.flickr.com/photos/brookhavenlab/with/ 51979821393/
- https://toppng.com/free-image/ vector-free-library-file-svg-wikimedia-commons-filered 225840

(日)

• Other images made through G.I.M.P